Log in

Enhancing Signal Detection in Frequency Selective Channels by Exploiting Time Diversity in Inter-symbol Interference Signal

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Inter-symbol interference (ISI) causes many errors in modulated symbols, when they are transmitted through band-limited channels. According to the multipath delay profile of the channel, the modulated symbol may disperse over more than one symbol period casing interferences among the received symbols. In this paper, the ISI signal is not considered as a problem, but it is exploited as a source of time diversity for the modulated symbols. The ISI signal is considered as if the modulated symbols are transmitted more than one time through different symbols periods. The number of periods over which the modulated symbol extends, represents the time diversity gain of the proposed system. In the proposed receiver, the interfering symbols are considered as symbols from different users. A multiuser detector is used to demodulate these interfering symbols. Moreover, a signal combiner is used to collect the detected symbol from the output of the multiuser detector through the dispersion period of the channel. The output of the combiner represents the decision variable to the baseband detector. The diversity gain in the decision variable in the proposed receiver is proportional to the dispersion period of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ankarali, Z., Pekoz, B., & Arslan, H. (2017). Flexible radio access beyond 5G: A future projection on waveform numerology & frame design principles. IEEE Access. https://doi.org/10.1109/access.2017.2684783.

    Google Scholar 

  2. Zhang, X., Chen, L., Qiu, J., & Abdoli, J. (2016). On the waveform for 5G. IEEE Communications Magazine, 54(11), 74–80. https://doi.org/10.1109/MCOM.2016.1600337CM.

    Article  Google Scholar 

  3. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082. https://doi.org/10.1109/JSAC.2014.2328098.

    Article  Google Scholar 

  4. Basnayaka, D. A., & Haas, H. (2016). MIMO interference channel between spatial multiplexing and spatial modulation. IEEE Transactions on Communications, 64(8), 3369–3381. https://doi.org/10.1109/TCOMM.2016.2580146.

    Article  Google Scholar 

  5. Xu, T., & Darwazeh, I. (2017). A joint waveform and precoding design for non-orthogonal multicarrier signals. In Wireless communications and networking conference (WCNC), 2017 IEEE. https://doi.org/10.1109/wcnc.2017.7925796.

  6. Tuntoolavest, U., & Limchaikit, K. (2015). Scaling method to increase data rate with no degradation in vector symbol decoding performance. In Communications (APCC), 2014 Asia-Pacific conference on. https://doi.org/10.1109/apcc.2014.7091643.

  7. Li, T., Wang, X., Fan, P., & Riihonen, T. (2017). Position-aided large-scale MIMO channel estimation for high-speed railway communication systems. IEEE Transactions on Vehicular Technology, 66(10), 8964–8978. https://doi.org/10.1109/TVT.2017.2703595.

    Article  Google Scholar 

  8. Choi, J., Evans, B. L., & Gatherer, A. (2017). Resolution-adaptive hybrid MIMO architectures for millimeter wave communications. IEEE Transactions on Signal Processing, 65(23), 6201–6216. https://doi.org/10.1109/TSP.2017.2745440.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J., Hu, J., & Zhou, J. (2016). Hardware and energy-efficient stochastic LU decomposition scheme for MIMO receivers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(4), 1391–1401. https://doi.org/10.1109/tvlsi.2015.2446481.

    Article  Google Scholar 

  10. Minango, J., & de Almeida, C. (2017). Optimum and quasi-optimum relaxation parameters for low-complexity massive MIMO detector based on Richardson method. IEEE Electronics Letters, 53(16), 1114–1115. https://doi.org/10.1049/el.2017.1910.

    Article  Google Scholar 

  11. Chen, X., Lu, J., Fan, P., & Letaief, K. B. (2017). Massive MIMO beamforming with transmit diversity for high mobility wireless communications. IEEE Access, 5, 23032–23045. https://doi.org/10.1109/ACCESS.2017.2766157.

    Article  Google Scholar 

  12. Dinc, E., & Akan, O. B. (2015). Fading correlation analysis in MIMO–OFDM troposcatter communications: Space, frequency, angle and space-frequency diversity. IEEE Transactions on Communications, 63(2), 476–486. https://doi.org/10.1109/TCOMM.2014.2387159.

    Article  Google Scholar 

  13. Liu, H., Zhou, S., Su, H., & Yu, Y. (2014). Detection performance of spatial-frequency diversity MIMO radar. IEEE Transactions on Aerospace and Electronic Systems, 50(4), 3137–3155. https://doi.org/10.1109/TAES.2013.120040.

    Article  Google Scholar 

  14. Matolak, D. W., Remley, K. A., Holloway, C. L., Zhang, Q., & Wu, Q. (2014). Large-scale site and frequency diversity in urban peer-to-peer channels for six public-safety frequency bands. IEEE Transactions on Wireless Communications, 13(4), 2025–2033. https://doi.org/10.1109/TWC.2014.022614.130816.

    Article  Google Scholar 

  15. Gozálvez, D., Gómez-Barquero, D., Vargas, D., & Cardona, N. (2013). Combined time, frequency and space diversity in DVB-NGH. IEEE Transactions on Broadcasting, 59(4), 674–684. https://doi.org/10.1109/TBC.2013.2281665.

    Article  Google Scholar 

  16. Hassan, A. Y. (2015). Code-time diversity for direct sequence spread spectrum systems. Wireless Personal Communications, 84(1), 695–718. https://doi.org/10.1007/s11277-015-2656-z.

    Article  Google Scholar 

  17. Phakphisut, W., & Supnithi, P. (2017). Design of LDPC codes for unequal ISI channels. IEEE Transactions on Magnetics. https://doi.org/10.1109/TMAG.2017.2700760.

    Google Scholar 

  18. Köken, E., & Tuncel, E. (2017). Joint source-channel coding for broadcasting correlated sources. IEEE Transactions on Communications, 65(7), 3012–3022. https://doi.org/10.1109/TCOMM.2017.2698031.

    Article  Google Scholar 

  19. Hadi, S. Q., Ehkan, P., Anuar, M. S., & Dawood, S. A. (2016). Performance comparison of STBC-FT based OFDM wireless communication system using M-QAM and M-PSK modulation techniques. In 2016, 3rd international conference on electronic design (ICED). IEEE. https://doi.org/10.1109/iced.2016.7804631.

  20. **ao, Z., Fu, S., Yao, S., Tang, M., Shum, P., & Liu, D. (2016). ICI mitigation for dual-carrier superchannel transmission based on m-PSK and m-QAM formats. Journal of Lightwave Technology, 34(23), 5526–5533. https://doi.org/10.1109/JLT.2016.2624758.

    Article  Google Scholar 

  21. Aminjavaheri, A., Farhang, A., Rezazadehreyhani, A., Doyle, L. E., & Farhang-Boroujeny, B. (2017). OFDM without CP in massive MIMO. IEEE Transactions on Wireless Communications, 16(11), 7619–7633. https://doi.org/10.1109/TWC.2017.2752153.

    Article  Google Scholar 

  22. Choi, J. (2017). Coded OFDM-IM with transmit diversity. IEEE Transactions on Communications, 65(7), 3164–3171. https://doi.org/10.1109/TCOMM.2017.2699182.

    Article  Google Scholar 

  23. Berardinelli, G., Pedersen, K. I., Sorensen, T. B., & Mogensen, P. (2016). Generalized DFT-spread-OFDM as 5G waveform. IEEE Communications Magazine, 54(11), 99–105. https://doi.org/10.1109/MCOM.2016.1600313CM.

    Article  Google Scholar 

  24. Proakis, J. (2007). Digital communications (5th ed.). McGraw-Hill Education. ISBN-13: 978-0072957167.

  25. Hassan, A. Y. (2016). Double rate OFDM system in time varying channel. In IEEE symposium on computers and communication (ISCC) (pp. 1163–1170). https://doi.org/10.1109/iscc.2016.7543894.

  26. Hassan, A. Y. (2017). A simple transmit diversity system for fading channels using shaped sinusoidal functions. AEU International Journal of Electronics and Communications, 76, 97–106. https://doi.org/10.1016/j.aeue.2017.03.024.

    Article  Google Scholar 

  27. Hassan, A. Y. (2017). Increasing the symbol rate in QAM system using a new set of orthonormal basics functions. Journal of Electrical Systems and Information Technology. https://doi.org/10.1016/j.jesit.2017.05.007.

    Google Scholar 

  28. Hassan, A. Y. (2015). A wide band QAM receiver based on DFE to reject ISI in wireless time varying fading channel. AEU International Journal of Electronics and Communications, 69(1), 332–343. https://doi.org/10.1016/j.aeue.2014.10.005.

    Article  Google Scholar 

  29. Hassan, A. Y. (2017). A novel structure of high speed OFDM receiver to overcome ISI and ICI in Rayleigh fading channel. Wireless Personal Communications, 97(3), 4305–4325. https://doi.org/10.1007/s11277-017-4726-x.

    Article  Google Scholar 

  30. Rappaport, T. S. (2002). Wireless communications: Principles and practice (2nd ed.). Prentice Hall. ISBN-13: 978-0130422323.

  31. Schonhoff, T. A., & Giordano, A. A. (2006). Detection and estimation theory and its applications. Pearson/Prentice Hall. ISBN-13: 9780130894991.

  32. Hassan, A. Y., & Shaaban, S. M. (2014). Enhancement of noise performance in digital receivers by over sampling the received signal. International Journal of Industrial Mathematics, 6(4), 275–284.

    Google Scholar 

  33. Verdu, S. (1998). Multiuser detection (1st ed.). Cambridge: Cambridge University Press. ISBN-13: 978-0521593731.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Y. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.Y. Enhancing Signal Detection in Frequency Selective Channels by Exploiting Time Diversity in Inter-symbol Interference Signal. Wireless Pers Commun 106, 1373–1395 (2019). https://doi.org/10.1007/s11277-019-06220-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06220-5

Keywords

Navigation