Log in

Low Voltage Low Power Single Ended Operational Transconductance Amplifier for Low Frequency Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents the designing of a low voltage low power single ended operational transconductance amplifier (OTA) for low frequency application. The designed OTA combines three different schemes i.e. current splitting, current cancellation and source degeneration technique. Source degeneration method using resistor is one of the most simple and ubiquitous technique to linearize the transfer characteristics of OTA. Current splitting technique is utilized to reduce the transconductance of OTA and to improve the linearity. Current cancellation technique is used to further reduce the transconductance. The OTA circuit is operated in sub-threshold region due to the stringent power limitation requirement in integrated circuits. The transconductance of the OTA is 4.5 nA/V with a linear range of +/− 0.25 V. To test the applicability of the proposed OTA, a fifth order Butterworth OTA-C low pass filter is realized. The circuit is operated at a supply voltage of +/− 0.5 V and the power consumption of the filter is 487 nW. The DC gain of the filter is − 6.1 dB with a cutoff frequency of 250 Hz. THD of − 50.61 dB of the OTA-C filter is obtained for a 100 mVpp signal with 100 Hz frequency. The circuit shows the best THD performance with less pass band attenuation for single ended filter circuit. The circuit is simulated in cadence environment using 150 nm CMOS process technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jihai, D., Weilin, X., & Baolin, W. (2015). An OTA-C filter for ECG acquisition systems with highly linear range and less pass-band attenuation. Journal of Semiconductor, 36(5), 055006-1–055006-6.

    Google Scholar 

  2. Kongpoon, M. (2013). A novel OTA-based voltage attenuation technique for very low frequency filtering using low-gm OTA filters. In International symposium on intelligent signal processing and communication systems, 12–15 November, https://doi.org/10.1109/ispacs.2013.6704635.

  3. Mahmoud, S. A., Bamakharamah, A., & Al-Tunaji, S. A. (2013). Low noise low-pass filter for ECG detection system with digitally programmable range. Circuits, Systems and Signal Processing, 32(5), 2029–2045.

    Article  MathSciNet  Google Scholar 

  4. Lewinski, A., & Silva-Martinez, J. (2004). OTA linearity enhancement technique for high frequency applications with IM3 below − 65 dB. IEEE Transactions on Circuits and Systems II: Express Briefs, 51(10), 542–548.

    Article  Google Scholar 

  5. Rasekh, A., & Bakhtiar, M. S. (2018). Design of low-power low area tunable active RC filters. IEEE Transaction on Circuits and Systems-II, 65(1), 6–10.

    Article  Google Scholar 

  6. Grasso, A. D., Palumb, G., & Pennisi, S. (2015). High performance four- stage CMOS OTA suitable for large capacitive loads. IEEE Transaction on Circuits and Systems, 6(10), 2476–2484.

    Article  MathSciNet  Google Scholar 

  7. Akbari, M., & Hashemipour, O. (2016). A 63 dB gain OTA operating in subthreshold region with 20 nW power consumption. International Journal of Circuit Theory and Application, 45(6), 843–850.

    Article  Google Scholar 

  8. Abdulaziz, M., Tormanen, M., & Sjoland, H. (2014). A compensation technique for two stage OTAs’. IEEE Transaction on Circuits and Systems-II, 61(8), 594–598.

    Article  Google Scholar 

  9. Sokmen, O. G., Ercan, H., Tekin, S. A., & Alci, M. (2015). A novel low voltage low power OTA based on level shifter current mirror. Elektronika ir Elektrotechnika, 21(2), 39–43.

    Article  Google Scholar 

  10. Grasso, A. D., Marano, D., Palumbo, G., & Pennisi, S. (2015). Design methodology of subthreshold three stage CMOS OTAs suitable for ultra-low-power low- area and high driving capability. IEEE Transactions on Circuits and Systems-I, 62(6), 1453–1462.

    Article  MathSciNet  Google Scholar 

  11. Mathad, R. S. (2014). Low frequency filter design using operational transconductance amplifier. IOSR Journal of Engineering (IOSRJEN), 04(4), 21–28.

    Article  MathSciNet  Google Scholar 

  12. Silva-Martinez, J., & Salcedo-Suñer, J. (1997). IC voltage to current transducers with very small transconductance. Analog Integrated Circuits and Signal Processing, 13(3), 285–293.

    Article  Google Scholar 

  13. Mahmoud, S. A., Bamakharamah, A., & Al-Tunaji, S. A. (2014). Six order cascaded power line Notch filter for ECG Detection system with noise sha**. Circuits, Systems and Signal Processing, 33(8), 2385–2400.

    Article  Google Scholar 

  14. Akbari, M., Nazari, M., Sharii, L., & Hashemipour, O. (2015). Improving power efficiency of two stage operational amplifier for biomedical applications. Analog Integrated Circuits and Signal Processing, 84(2), 173–183.

    Article  Google Scholar 

  15. Cabrera-Bernal, E., Pennisi, S., Grasso, A. D., Torralba, A., & Carvajal, R. G. (2016). 0.7-V three-stage class-AB CMOS operational transconductance amplifier. IEEE Transactions on Circuits and Systems I, 63(11), 1807–1815.

    Article  Google Scholar 

  16. Kuo, K. C., & Leuciuc, A. (2001). A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(10), 937–943.

    Article  Google Scholar 

  17. Comer, D. J., & Comer, D. T. (2004). Operation of analog MOS circuits in the weak or moderate inversion region. IEEE Transactions on Education, 47(4), 430–435.

    Article  Google Scholar 

  18. Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2007). An ultra-low-voltage ultra-low-power CMOS miller OTA with rail-to-rail input/output swing. IEEE Transactions on Circuits and Systems—II: Express Briefs, 54(10), 843–847.

    Article  Google Scholar 

  19. Chen, Y., Mak, P. I., D’Amico, S., Zhang, L., Qian, H., & Wang, Y. (2013). A single-branch third-order pole zero low-pass filter with 0.014-mm2 die size and 0.8-kHz (1.25-nW) to 0.94-GHz (3.99-mW) bandwidth-power scalability. IEEE transactions on circuits and systems II: Express briefs, 60(11), 761–765.

    Article  Google Scholar 

  20. Sun, C.-Y., & Lee, S.-Y. (2017). A fifth order butterworth OTA-C LPF with multiple output differential input OTA for ECG applications. IEEE Transaction on Circuits & Systems-II: Express Brief, 65(4), 421–425.

    Article  MathSciNet  Google Scholar 

  21. Naik, S., Bale, S., Dessai, T. R., Kamat, G., &Vasantha, M. H. (2015). 0.5 V 225 nW, 100 Hz lowpass filter in 0.18 um CMOS process. In IEEE international advance computing conference (IACC) (pp. 165–169).

  22. Sun, C.-Y., & Lee, S.-Y. (2009). Systematic design and modelling of OTA-C filter for poratable ECG detection. IEEE Transaction on Circuits & Systems-I, 3(1), 53–64.

    MathSciNet  Google Scholar 

  23. Solis-Bustos, S., Silva-Martínez, J., Maloberti, F., & Sánchez-Sinencio, E. (2000). A 60 dB dynamic-range CMOS sixth-order 2.4 Hz lowpass filter for medical applications. IEEE Transactions on Circuits and Systems I, 47(12), 1391–1398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleha Bano.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bano, S., Narejo, G.B. & Usman Ali Shah, S.M. Low Voltage Low Power Single Ended Operational Transconductance Amplifier for Low Frequency Applications. Wireless Pers Commun 106, 1875–1884 (2019). https://doi.org/10.1007/s11277-018-5726-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5726-1

Keywords

Navigation