Log in

MH-SIA: multi-objective handover using swarm intelligence algorithm for future wireless communication system

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Heterogeneous networks are needed to meet user demands as wireless network demand rises. Network mobility management is crucial. Mobility management challenges are related to handover solutions to decrease call/packet losses in such networks. The handover is one of the most critical parts of mobility management in the Long-Term Evolution of Advanced (LTE-A) system, which relies on handover procedures to improve quality, coverage, and service in the existing network. The LTE-A future wireless communication networks consist of various femtocells, microcells, and macrocells. Therefore, designing the appropriate mechanism to perform handovers among different cells is a challenging research problem. We propose a novel handover mechanism called multi-objective handover using swarm intelligence algorithm (MH-SIA) for the future wireless communication system. MH-SIA is made of two novel features multi-objective handover and SIA for handover process optimization. The multi-objective trust parameters of each User's Equipment are computed to perform the handover decision-making and target cell selection using the SIA. The computed trust parameters are utilized as the modified fitness function in Differential Evolution (DE) optimization technique. Due to the fast convergence of DE, it performs computationally efficient handover operations. The multi-objective trust parameters are utilized in handover decision-making and target cell selection to improve network performances with minimum handover latency. The experimental result of MH-SIA reveals the efficient performance compared to underlying methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Mahajan, H. B., & Badarla, A. (2018). Application of internet of things for smart precision farming: Solutions and challenges. International Journal of Advanced Science and Technology, 2018, 37–45.

    Google Scholar 

  2. Mahajan, H. B., Badarla, A., & Junnarkar, A. A. (2021). CL-IoT: Cross-layer Internet of Things protocol for intelligent manufacturing of smart farming. Journal of Ambient Intelligence and Humanized Computing, 12, 7777–7791. https://doi.org/10.1007/s12652-020-02502-0

    Article  Google Scholar 

  3. Mahajan, H. B., & Badarla, A. (2020). Detecting HTTP vulnerabilities in IoT-based precision farming connected with cloud environment using artificial intelligence. International Journal of Advanced Science and Technology, 29(3), 214–226.

    Google Scholar 

  4. Mahajan, H. B., & Badarla, A. (2019). Experimental analysis of recent clustering algorithms for wireless sensor network: Application of IoT based smart precision farming. Journal of Advanced Research in Dynamical and Control Systems, 11(9), 1276–1286. https://doi.org/10.5373/JARDCS/V11I9/20193162

    Article  Google Scholar 

  5. Mahajan, H. B., & Badarla, A. (2021). Cross-layer protocol for WSN-assisted IoT smart farming applications using nature inspired algorithm. Wireless Personal Communications, 121, 3125–3149. https://doi.org/10.1007/s11277-021-08866-6

    Article  Google Scholar 

  6. Cardoso, F. D., Lipovac, V., & Correia, L. M. (2021). Wireless technologies for the connectivity of the future. J Wireless Com Network, 2021, 118. https://doi.org/10.1186/s13638-021-01980-w

    Article  Google Scholar 

  7. Chen, K.-C., Peng, Y.-J., Prasad, N., Liang, Y.-C., & Sun, S. (2008). Cognitive radio network architecture. In Proceedings of the 2nd international conference on ubiquitous information management and communication—ICUIMC ’08. https://doi.org/10.1145/1352793.1352818.

  8. Mitola, J. (n.d.). Cognitive radio architecture, cooperation in wireless networks: principles and applications. In Proceedings of the 2nd international conference on ubiquitous information management and communication (pp. 243–311). https://doi.org/10.1007/s1-4020-4711-8_9.

  9. Ahmad, R., Sundararajan, E. A., Othman, N. E., et al. (2017). Handover in LTE-advanced wireless networks: State of art and survey of decision algorithm. Telecommunication Systems, 66, 533–558. https://doi.org/10.1007/s11235-017-0303-6

    Article  Google Scholar 

  10. Taleb, H., Nasser, A., Andrieux, G., Charara, N., & Motta Cruz, E. (2021). Wireless technologies, medical applications and future challenges in WBAN: A survey. Wireless Networks, 27, 5271–5295. https://doi.org/10.1007/s11276-021-02780-2

    Article  Google Scholar 

  11. Bhoite, K. S., & Gengaje, S. (2017). Handover management in two-tier Femtocell-Macrocell network. Wireless Personal Communications, 98(3), 2849–2866. https://doi.org/10.1007/s11277-017-5004-7

    Article  Google Scholar 

  12. Kurda, R., Boukhatem, L., & Kaneko, M. (2015). Femtocell power control methods based on users’ context information in two-tier heterogeneous networks. Journal on Wireless Communications and Networking, 2015, 129. https://doi.org/10.1186/s13638-015-0328-z

    Article  Google Scholar 

  13. Ahmed, A. U., Islam, M. T., Ismail, M., & Ghanbarisabagh, M. (2014). Dynamic resource allocation in hybrid access femtocell network. The Scientific World Journal, 2014, 1–7. https://doi.org/10.1155/2014/539720

    Article  Google Scholar 

  14. Mikhail, A., Kareem, H. H., & Mahajan, H. (2017). Fault tolerance to balance for messaging layers in communication society. In 2017 international conference on computing, communication, control and automation (ICCUBEA). https://doi.org/10.1109/iccubea.2017.8463871

  15. Mikhail, A., Kamil, I. A., & Mahajan, H. (2017). Increasing SCADA system availability by fault tolerance techniques. In 2017 international conference on computing, communication, control and automation (ICCUBEA). https://doi.org/10.1109/iccubea.2017.8463911.

  16. Sun, W., Tang, M., Zhang, L., Huo, Z., & Shu, L. (2020). A survey of using swarm intelligence algorithms in IoT. Sensors., 20, 1420. https://doi.org/10.3390/s20051420

    Article  Google Scholar 

  17. Al-Mousawi, A. (2021). Wireless communication networks and swarm intelligence. Wireless Networks, 27, 1755–1782. https://doi.org/10.1007/s11276-021-02545-x

    Article  Google Scholar 

  18. Shin, C., & Lee, M. (2020). Swarm-intelligence-centric routing algorithm for wireless sensor networks. Sensors, 20(18), 5164. https://doi.org/10.3390/s20185164

    Article  Google Scholar 

  19. Okagbue, H., Adamu, M., & Anake, T. (2019). Differential evolution in wireless communications: A review. International Journal of Online Engineering (iJOE)., 15, 29–52. https://doi.org/10.3991/ijoe.v15i11.10651

    Article  Google Scholar 

  20. Ren, J., Wang, J., Yulong, X., & Cao, L. (2015). Applying differential evolution algorithm to deal with optimal path issues in wireless sensor networks (pp. 1738–1743). https://doi.org/10.1109/ICMA.2015.7237748.

  21. Suma, H. S., Mathew, R., & Prabodh, C. P. (2018). Analysis of intra-LTE handover in an error prone environment. In 2018 international conference on inventive research in computing applications (ICIRCA). https://doi.org/10.1109/icirca.2018.8597405.

  22. Biswas, S., Chakraborty, S., & Gupta, A. (2018). Reducing spurious handovers in dense LTE networks based on signal strength look-ahead. In 2018 14th international conference on wireless and mobile computing, networking and communications (WiMob). https://doi.org/10.1109/wimob.2018.8589147.

  23. Adel, M., Darweesh, M. S., Mostafa, H., Kamal, H., & El-Ghoneimy, M. (2018). Optimization of handover problem using Q-learning for LTE network. In 2018 30th international conference on microelectronics (ICM). https://doi.org/10.1109/icm.2018.8704001

  24. Preethi, G. A., Gauthamarayathirumal, P., & Chandrasekar, C. (2019). Vertical handover analysis using modified MADM method in LTE. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01251-5

    Article  Google Scholar 

  25. Tayyab, M., Koudouridis, G. P., Gelabert, X., & Jantti, R. (2019). Signaling overhead and power consumption during handover in LTE. In 2019 IEEE wireless communications and networking conference (WCNC). doi:https://doi.org/10.1109/wcnc.2019.8885459.

  26. Mandour, M., Gebali, F., Elbayoumy, A. D., Abdel Hamid, G. M., & Abdelaziz, A. (2019). Handover optimization and user mobility prediction in LTE femtocells network. In 2019 IEEE international conference on consumer electronics (ICCE). https://doi.org/10.1109/icce.2019.8662064.

  27. Khwandah, S. A., Cosmas, J. P., Lazaridis, P. I., et al. (2019). Energy efficient mobility enhancement in LTE pico-macro HetNet systems. Wireless Personal Communications, 109, 1491–1502. https://doi.org/10.1007/s11277-019-06623-4

    Article  Google Scholar 

  28. Alhammadi, A., Roslee, M., Alias, M. Y., Shayea, I., Alraih, S., & Mohamed, K. S. (2020). Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets. IEEE Access, 8, 294–304. https://doi.org/10.1109/access.2019.2961186

    Article  Google Scholar 

  29. Achhab, T., Abboud, F., & Assalem, A. (2021). A robust self-optimization algorithm based on idiosyncratic adaptation of handover parameters for mobility management in LTE-A heterogeneous networks. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3127326

    Article  Google Scholar 

  30. Gupta, A. K., Goel, V., Garg, R. R., Thirupurasundari, D. R., Verma, A., & Sain, M. (2021). A fuzzy based handover decision scheme for mobile devices using predictive model. Electronics, 10(16), 2016. https://doi.org/10.3390/electronics10162016

    Article  Google Scholar 

  31. Kalbkhani, H., Jafarpour-Alamdari, S., Shayesteh, M. G., & Solouk, V. (2017). QoS-based multi-criteria handoff algorithm for Femto-Macro cellular networks. Wireless Personal Communications, 98(1), 1435–1460. https://doi.org/10.1007/s11277-017-4925-5

    Article  Google Scholar 

  32. Ra**ikanth, E., & Jayashri, S. (2019). Interoperability in heterogeneous wireless networks using FIS-ENN vertical handover model. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06406-x

    Article  Google Scholar 

  33. Mansouri, M., & Leghris, C. (2020). A use of fuzzy TOPSIS to improve the network selection in wireless multiaccess environments. Journal of Computer Networks and Communications, 2020, 1–12. https://doi.org/10.1155/2020/3408326

    Article  Google Scholar 

  34. Wang, S., Deng, H., **ong, R., et al. (2021). A multi-objective model-based vertical handoff algorithm for heterogeneous wireless networks. J Wireless Com Network, 2021, 75. https://doi.org/10.1186/s13638-021-01952-0

    Article  Google Scholar 

  35. Manoj, & Kumar, S. (2022). A proposed cell selection and handover optimization using TAOWOA in self-organized LTE networks. Journal of Interdisciplinary Mathematics, 25, 1–20. https://doi.org/10.1080/09720502.2021.2012892

  36. Mohajer, A., Daliri, M., Mirzaei, A., Ziaeddini, A., Nabipour, M., & Bavaghar, M. (2022). Heterogeneous computational resource allocation for NOMA: toward green mobile edge-computing systems. IEEE Transactions on Services Computing. https://doi.org/10.1109/TSC.2022.3186099

    Article  Google Scholar 

  37. Dong, S., Zhan, J., Hu, W., Mohajer, A., Bavaghar, M., & Mirzaei, A. (2023). Energy-efficient hierarchical resource allocation in uplink-downlink decoupled NOMA HetNets. IEEE Transactions on Network and Service Management. https://doi.org/10.1109/TNSM.2023.3239417

    Article  Google Scholar 

  38. Mahajan, H. B., Uke, N., Pise, P., et al. (2022). Automatic robot Manoeuvres detection using computer vision and deep learning techniques: A perspective of internet of robotics things (IoRT). Multimedia Tools and Applications, 82, 23251–23276. https://doi.org/10.1007/s11042-022-14253-5

    Article  Google Scholar 

  39. Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Rad, K., & Bavaghar, M. (2022). Energy-aware hierarchical resource management and backhaul traffic optimization in heterogeneous cellular networks. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2022.3154162

    Article  Google Scholar 

  40. Mahajan, H. B., & Junnarkar, A. A. (2023). Smart healthcare system using integrated and lightweight ECC with private blockchain for multimedia medical data processing. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-15204-4

    Article  Google Scholar 

  41. Alhayani, B., Kwekha-Rashid, A. S., Mahajan, H. B., et al. (2022). 5G standards for the Industry 4.0 enabled communication systems using artificial intelligence: Perspective of smart healthcare system. Applied Nanoscience. https://doi.org/10.1007/s13204-021-02152-4

    Article  Google Scholar 

  42. Mahajan, H. B., Rashid, A. S., Junnarkar, A. A., et al. (2022). Integration of Healthcare 4.0 and blockchain into secure cloud-based electronic health records systems. Applied Nanoscience. https://doi.org/10.1007/s13204-021-02164-0

    Article  Google Scholar 

  43. Mahajan, H., Junnarkar, A., Tiwari, M., Tiwari, T., & Upadhyaya, M. (2022). LCIPA: Lightweight clustering protocol for industry 4.0 enabled precision agriculture. Microprocessors and Microsystems, 94, 104633. https://doi.org/10.1016/j.micpro.2022.104633

    Article  Google Scholar 

Download references

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul B. Wani.

Ethics declarations

Conflict of interest

All authors declares that they has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, A.B., Deshpande, A.A. & Patil, S.H. MH-SIA: multi-objective handover using swarm intelligence algorithm for future wireless communication system. Wireless Netw 30, 2617–2632 (2024). https://doi.org/10.1007/s11276-024-03661-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-024-03661-0

Keywords

Navigation