Log in

Resource management in UAV-assisted MEC: state-of-the-art and open challenges

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Unmanned aerial vehicles (UAV) have been widely used in various fields because of their high mobility and portability. At the same time, due to the rapid development of artificial intelligence, people’s demand for computing is increasing, and the computing power of existing mobile computing devices cannot fully meet the users’ needs for network quality. Therefore, people have proposed mobile edge computing technology (MEC), but MEC still has some shortcomings, such as poor dynamic performance. Therefore, combining the two will have better results. Due to the limited battery capacity of UAVs, the continuity of the UAV Communication Network is affected. Therefore, effectively using the limited spectrum resources, reducing the energy consumption of UAVs and meeting the users’ quality of service needs have become urgent problems to be solved. Under the framework of UAV-assisted MEC, this paper focuses on the downlink communication energy efficiency of a single UAV Communication Network, arranges and analyzes the methods and technologies found in different research, reviews specific UAV practical applications, provides a relevant discussion and method analysis for the problems existing in the UAV Communication Network, and presents its existing problems and our future research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

UAV:

unmanned aerial vehicle

MEC:

mobile edge computing

LoS:

line of sight

CPU:

central processing unit

MCC:

mobile cloud computing

ETSA:

European Telecommunications Standardization Association

WPT:

wireless power transmission

SCA:

successive convex approximation

IoT:

Internet of things

KKT:

Karush-Kuhn-Tucker

BC:

broadcast channel

D2D:

device-to-device

NOMA:

non-orthogonal multiple access

TD-LTE:

time division-long term elevation

References

  1. Anwar, Muhammad Rizwan, Wang, Shangguang, Faisal, Akram Muhammad, Raza, Salman, & Mahmood, Shahid. (2022). 5g-enabled mec: A distributed traffic steering for seamless service migration of internet of vehicles. IEEE Internet of Things Journal, 9(1), 648–661.

    Article  Google Scholar 

  2. Wang, Shuai., Vasilakos, Athanasios., Jiang, Hongbo., Ma, **aoqiang., Liu, Wenyu., Peng, Kai., Liu, Bo, & Dong Yan. (2011). Energy efficient broadcasting using network coding aware protocol in wireless ad hoc network. In 2011 IEEE International Conference on Communications (ICC), pages 1–5.

  3. Souza, Caio, Falcao, Marcos, Balieiro, Andson, & Dias, Kelvin. (2021). Modelling and analysis of 5g networks based on mec-nfv for urllc services. IEEE Latin America Transactions, 19(10), 1745–1753.

    Article  Google Scholar 

  4. Zhang, Tian, & Chen, Wei. (2021). Computation offloading in heterogeneous mobile edge computing with energy harvesting. IEEE Transactions on Green Communications and Networking, 5(1), 552–565.

    Article  Google Scholar 

  5. **ao, Zhu, Li, Fancheng, Jiang, Hongbo, Bai, **g, Jisheng, Xu., Zeng, Fanzi, & Liu, Min. (2020). A joint information and energy cooperation framework for cr-enabled macro-femto heterogeneous networks. IEEE Internet of Things Journal, 7(4), 2828–2839.

    Article  Google Scholar 

  6. Zeng, Fanzi, Li, Qiao, **ao, Zhu, Havyarimana, Vincent, & Bai, **g. (2018). A price-based optimization strategy of power control and resource allocation in full-duplex heterogeneous macrocell-femtocell networks. IEEE Access, 6, 42004–42013.

    Article  Google Scholar 

  7. Jiang, H., **ao, Z., Li, Z., Xu, J., & Wang, D. (2020). An energy-efficient framework for internet of things underlaying heterogeneous small cell networks. IEEE Transactions on Mobile Computing, PP(99), 1.

    Google Scholar 

  8. **ao, Z., Liu, H., Vincent, Havyarimana, Li, T., & Dong, W. (2016). Analytical study on multi-tier 5g heterogeneous small cell networks: Coverage performance and energy efficiency. Sensors, 16, 1854.

    Article  Google Scholar 

  9. Jiang, Hongbo, Dai, **ngxia, **ao, Zhu, & Iyengar, Arun K. (2022). Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Transactions on Mobile Computing, pages 1.

  10. Dai, **ngxia, **ao, Zhu, Jiang, Hongbo, Alazab, Mamoun, Lui, John, Dustar, Schaharam, & Liu, Jiangchuan. (2022). Task co-offloading for d2d-assisted mobile edge computing in industrial internet of things. IEEE Transactions on Industrial Informatics, pages 1.

  11. Mahata, S., Saha, S. K., Kar, R., & Mandal, D. (2017). Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm. Soft Computing, 32, 3757.

    Google Scholar 

  12. Li, Bin, Fei, Zesong, & Zhang, Yan. (2019). Uav communications for 5g and beyond: Recent advances and future trends. IEEE Internet of Things Journal, 6(2), 2241–2263.

    Article  Google Scholar 

  13. Wang, Peixin, Li, Youming, Chang, Shengming, **, **, & Wang, **aoli. (2020). Time-of-arrival-based localization algorithm in mixed line-of-sight-line-of-sight environments. International Journal of Distributed Sensor Networks., 16, 1550147720913808.

    Article  Google Scholar 

  14. Chen, Chien Sheng. (2017). A non-line-of-sight error mitigation method for location estimation. International Journal of Distributed Sensor Networks, 13(1), 1550147716682739.

    Article  Google Scholar 

  15. Adnan, Landolsi Mohamed, & Almutairi, Ali F. (2016). Reliable line-of-sight and non-line-of-sight propagation channel identification in ultra-wideband wireless networks. International Journal of Electronics and Communication Engineering, 11(1), 23–26.

    Google Scholar 

  16. Kang, Zhenyu, You, Changsheng, & Zhang, Rui. (2021). 3d placement for multi-uav relaying: An iterative gibbs-sampling and block coordinate descent optimization approach. IEEE Transactions on Communications, 69(3), 2047–2062.

    Article  Google Scholar 

  17. Naitsat, Alexander, Zhu, Yufeng, & Zeevi, Yehoshua Y. (2020). Adaptive block coordinate descent for distortion optimization. Computer Graphics Forum, 39(6), 360–376.

    Article  Google Scholar 

  18. Rabanser, Simon, Neumann, Lukas, & Haltmeier, Markus. (2019). Analysis of the block coordinate descent method for linear ill-posed problems. SIAM Journal on Imaging Sciences, 12(4), 1808–1832.

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, Yennun, Chen, Yih-farn, Jana, Rittwik, Jiang, Hongbo, Rabinovich, Michael, Reibman, Amy, Wei, Bin, & **ao, Zhen. (2007). Capacity analysis of mediagrid: A p2p iptv platform for fiber to the node (fttn) networks. IEEE Journal on Selected Areas in Communications, 25(1), 131–139.

    Article  Google Scholar 

  20. Jiang, Hongbo, Li, Jie, Zhao, **, Zeng, Fanzi, **ao, Zhu, & Iyengar, Arun K. (2021). Location privacy-preserving mechanisms in location-based services. ACM Computing Surveys (CSUR)., 54, 1–36.

    Google Scholar 

  21. Chen, Kongyang, Wang, Chen, Yin, Zhimeng, Jiang, Hongbo, & Tan, Guang. (2018). Slide: Towards fast and accurate mobile fingerprinting for wi-fi indoor positioning systems. IEEE Sensors Journal, 18(3), 1213–1223.

    Article  Google Scholar 

  22. Jiang, Hongbo, Ge, Zihui, **, Shudong, & Wang, Jia. (2010). Network prefix-level traffic profiling: Characterizing, modeling, and evaluation. Computer Networks, 54(18), 3327–3340.

    Article  Google Scholar 

  23. Jiang, H., Iyengar, A., Nahum, Erich., Segmuller, W., & Wright, C. P. (2009). Load balancing for sip server clusters. In Infocom.

  24. Haojun, Huang, Hao, Yin, Geyong, Min, Hongbo, Jiang, & Junbao, Zhang. (2017). Data-driven information plane in software-defined networking. IEEE Communications Magazine, 55(6), 218–224.

    Article  Google Scholar 

  25. Iyengar, A. K., Jiang, H., Nahum, E. M., Segmuller, W., Tantawi, A. N. & Wright, C. P. (2011). Method and system for load balancing with affinity.

  26. Jiang, H., Jie, C., Dan, W., Wang, C., & Tan, G. (2011). Continuous multi-dimensional top-k query processing in sensor networks. In INFOCOM, 2011 Proceedings IEEE.

  27. Jiang, H., Zhao, P., & Wang, C. (2018). Roblop: Towards robust privacy preserving against location dependent attacks in continuous lbs queries. IEEE/ACM Transactions on Networking, pp. 1018–1032.

  28. Parada, C., Fontes, F., Marques, C., Cunha, V., & Leitao, C. (2018). Multi-access edge computing: A 5g technology. pp. 277–9.

  29. Abbas, Nasir, Zhang, Yan, Taherkordi, Amir, & Skeie, Tor. (2018). Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), 450–465.

    Article  Google Scholar 

  30. Chmaj, G., & Selvaraj, H. (2015). Distributed processing applications for uav/drones: A survey. In International Conference on Systems Engineering.

  31. Gupta, Lav, Jain, Raj, & Vaszkun, Gabor. (2016). Survey of important issues in uav communication networks. IEEE Communications Surveys Tutorials, 18(2), 1123–1152.

    Article  Google Scholar 

  32. Hao, Y., Miao, Y., Hu, L., Hossain, M. S., Muhammad, G., & Amin, S. U. (2019). Smart-edge-cocaco: Ai-enabled smart edge with joint computation, caching, and communication in heterogeneous iot. IEEE: Network.

    Google Scholar 

  33. Liao, X., Xu, C., & Yue, H. (2019). Enable uavs safely flight in low-altitude: A preliminary research of the public air route network of uavs. In 2019 International Conference on Unmanned Aircraft Systems (ICUAS).

  34. Zhong, **jian, Guo, Yan, Li, Ning, & Chen, Yancheng. (2020). Joint optimization of relay deployment, channel allocation, and relay assignment for uavs-aided d2d networks. IEEE/ACM Transactions on Networking, 28(2), 804–817.

    Article  Google Scholar 

  35. Li, Bing, Zhao, Shengjie, Zhang, Rongqing, & Yang, Liuqing. (2021). Full-duplex uav relaying for multiple user pairs. IEEE Internet of Things Journal, 8(6), 4657–4667.

    Article  Google Scholar 

  36. Zhong, **jian, Guo, Yan, Li, Ning, & Li, Shanling. (2020). Joint relay assignment and channel allocation for opportunistic uavs-aided dynamic networks: A mood-driven approach. IEEE Transactions on Vehicular Technology, 69(12), 15019–15034.

    Article  Google Scholar 

  37. Gao, Honghao, Liu, Can, Yin, Yuyu, Yueshen, Xu., & Li, Yu. (2021). A hybrid approach to trust node assessment and management for vanets cooperative data communication: Historical interaction perspective. IEEE Transactions on Intelligent Transportation Systems, pages 1–10.

  38. GaoHonghao, HuangWanqiu, & DuanYucong. (2021). The cloud-edge-based dynamic reconfiguration to service workflow for mobile ecommerce environments. ACM Transactions on Internet Technology (TOIT).

  39. Wang, Haichao, Wang, **long, Ding, Guoru, Chen, **, Li, Yuzhou, & Han, Zhu. (2018). Spectrum sharing planning for full-duplex uav relaying systems with underlaid d2d communications. IEEE Journal on Selected Areas in Communications, 36(9), 1986–1999.

    Article  Google Scholar 

  40. Mohana, S. D., Shiva Prakash, S. P., & Krinkin, Kirill. (2022). Service oriented r-ann knowledge model for social internet of things.

  41. Chakraborty, Ayon., Chai, Eugene., Sundaresan, Karthikeyan., & et.al. (2018). Skyran: A self-organizing lte ran in the sky. In Proceedings of the 14th International Conference on Emerging Networking EXperiments and Technologies, CoNEXT ’18, page 280-292, New York, NY, USA. Association for Computing Machinery.

  42. Qingqing, Wu., Jie, Xu., & Zhang, Rui. (2018). Capacity characterization of uav-enabled two-user broadcast channel. IEEE Journal on Selected Areas in Communications, 36(9), 1955–1971.

    Article  Google Scholar 

  43. Asiful Huda, S. M., & Moh, Sangman. (2022). Survey on computation offloading in uav-enabled mobile edge computing. Journal of Network and Computer Applications, 201, 103341.

    Article  Google Scholar 

  44. Zhang, W., Li, L., Zhang, N., Han, T., & Wang, S. (2020). Air-ground integrated mobile edge networks: A survey. IEEE Access, PP(99), 1.

  45. Arioua, M. (2021). Uav-enabled mobile edge-computing for iot based on ai: A comprehensive review. Drones, 5.

  46. Cai, Yunlong, Cui, Fangyu, Shi, Qingjiang, et al. (2018). Dual-uav-enabled secure communications: Joint trajectory design and user scheduling. IEEE Journal on Selected Areas in Communications, 36(9), 1972–1985.

    Article  Google Scholar 

  47. Zhu, Yongxu, Zheng, Gan, & Fitch, Michael. (2018). Secrecy rate analysis of uav-enabled mmwave networks using matérn hardcore point processes. IEEE Journal on Selected Areas in Communications, 36(7), 1397–1409.

    Article  Google Scholar 

  48. Prajna, Stephen, Parrilo, Pablo, & Rantzer, Anders. (2004). Nonlinear control synthesis by convex optimization. IEEE Transactions on Automatic Control, 49(2), 310–314.

    Article  MathSciNet  MATH  Google Scholar 

  49. Sun, Yan, Dongfang, Xu., Ng, Derrick Wing Kwan., et al. (2019). Optimal 3d-trajectory design and resource allocation for solar-powered uav communication systems. IEEE Transactions on Communications, 67(6), 4281–4298.

    Article  Google Scholar 

  50. Qingqing, Wu., & Zhang, Rui. (2018). Common throughput maximization in uav-enabled ofdma systems with delay consideration. IEEE Transactions on Communications, 66(12), 6614–6627.

    Article  Google Scholar 

  51. Zeng, Yong, **aoli, Xu., & Zhang, Rui. (2018). Trajectory design for completion time minimization in uav-enabled multicasting. IEEE Transactions on Wireless Communications, 17(4), 2233–2246.

    Article  Google Scholar 

  52. Lyu, Jiangbin, Zeng, Yong, & Zhang, Rui. (2018). Uav-aided offloading for cellular hotspot. IEEE Transactions on Wireless Communications, 17(6), 3988–4001.

    Article  Google Scholar 

  53. You, Changsheng, & Zhang, Rui. (2019). 3d trajectory optimization in rician fading for uav-enabled data harvesting. IEEE Transactions on Wireless Communications, 18(6), 3192–3207.

    Article  Google Scholar 

  54. Gong, Jie, Chang, Tsung-Hui., Shen, Chao, et al. (2018). Flight time minimization of uav for data collection over wireless sensor networks. IEEE Journal on Selected Areas in Communications, 36(9), 1942–1954.

    Article  Google Scholar 

  55. Cui, Fangyu, Cai, Yunlong, Qin, Zhi**, et al. (2019). Multiple access for mobile-uav enabled networks: Joint trajectory design and resource allocation. IEEE Transactions on Communications, 67(7), 4980–4994.

    Article  Google Scholar 

  56. Chowdhury, Md Moin Uddin., Maeng, Sung Joon, Bulut, Eyuphan, et al. (2020). 3-d trajectory optimization in uav-assisted cellular networks considering antenna radiation pattern and backhaul constraint. IEEE Transactions on Aerospace and Electronic Systems, 56(5), 3735–3750.

    Article  Google Scholar 

  57. Huici, Wu., Wei, Zhiqing, Hou, Yanzhao, et al. (2020). Cell-edge user offloading via flying uav in non-uniform heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 19(4), 2411–2426.

    Article  Google Scholar 

  58. Samir, Moataz, Sharafeddine, Sanaa, Assi, Chadi M., et al. (2020). Uav trajectory planning for data collection from time-constrained iot devices. IEEE Transactions on Wireless Communications, 19(1), 34–46.

    Article  Google Scholar 

  59. **aoli, Xu., Zeng, Yong, Guan, Yong Liang, et al. (2018). Overcoming endurance issue: Uav-enabled communications with proactive caching. IEEE Journal on Selected Areas in Communications, 36(6), 1231–1244.

    Article  Google Scholar 

  60. Mozaffari, Mohammad, Saad, Walid, Bennis, Mehdi, et al. (2017). Mobile unmanned aerial vehicles (uavs) for energy-efficient internet of things communications. IEEE Transactions on Wireless Communications, 16(11), 7574–7589.

    Article  Google Scholar 

  61. Zeng, Yong, & Zhang, Rui. (2017). Energy-efficient uav communication with trajectory optimization. IEEE Transactions on Wireless Communications, 16(6), 3747–3760.

    Article  Google Scholar 

  62. Huang, Wenhuan, Yang, Zhaohui, Pan, Cunhua, et al. (2019). Joint power, altitude, location and bandwidth optimization for uav with underlaid d2d communications. IEEE Wireless Communications Letters, 8(2), 524–527.

    Article  Google Scholar 

  63. Zhang, Chiya, & Zhang, Wei. (2017). Spectrum sharing for drone networks. IEEE Journal on Selected Areas in Communications, 35(1), 136–144.

    Google Scholar 

  64. Deng, Qingyong, Li, Zhetao, Chen, Jiabei, et al. (2018). Dynamic spectrum sharing for hybrid access in ofdma-based cognitive femtocell networks. IEEE Transactions on Vehicular Technology, 67(11), 10830–10840.

    Article  Google Scholar 

  65. **ao, Zhu, Dai, **ngxia, Jiang, Hongbo, et al. (2020). Vehicular task offloading via heat-aware mec cooperation using game-theoretic method. IEEE Internet of Things Journal, 7(3), 2038–2052.

    Article  Google Scholar 

  66. V. L. Dao, H. Tran, S. Girs, and E. Uhlemann. (2019). Reliability and fairness for uav communication based on non-orthogonal multiple access. In 2019 IEEE International Conference on Communications Workshops (ICC Workshops).

  67. Ding, R., Gao, F., & Shen, X. S. (2020). 3d uav trajectory design and frequency band allocation for energy-efficient and fair communication: A deep reinforcement learning approach. IEEE Transactions on Wireless Communications, 99, 1.

    Google Scholar 

  68. Mmu Chowdhury, S. J. Maeng, E. Bulut, and I. Guvenc. (2019). Effects of 3d antenna radiation and two-hop relaying on optimal uav trajectory in cellular networks. IEEE.

  69. J. Hu, H. Zhang, X. Li, and H. Ji. (2020). Task-Aware Joint Computation Offloading for UAV-Enabled Mobile Edge Computing Systems. Communications and Networking.

  70. Y. Si, Z. Chao, Y. Li, and B. Yu. (2018). Optimization design of new solar uav detection and communication based on pso-aco algorithm. Journal of Bei**g University of Civil Engineering and Architecture.

  71. Zeng, Y., & Zhang, R. (2017). Energy-efficient uav communication with trajectory optimization. IEEE Transactions on Wireless Communications., 16, 3747–3760.

    Article  Google Scholar 

  72. T. Furutani, Y. Kawamoto, H. Nishiyama, and N. Kato. (2018). Uav-assisted information diffusion technique with uniquely virtual cells based on wi-fi direct. In 2018 21st International Symposium on Wireless Personal Multimedia Communications (WPMC).

  73. Z. Liang, A. Elik, S. Dang, and B. Shihada. (2021). Energy-efficient trajectory optimization for uav-assisted iot networks. IEEE Transactions on Mobile Computing.

  74. Rong-Rong, Lu., Wang, **-Yuan., **an-Tao, Fu., Lin, Sheng-Hong., Wang, Qinglin, & Zhang, Bingyuan. (2022). Performance analysis and optimization for uav-based fso communication systems. Physical Communication, 51, 101594.

    Article  Google Scholar 

  75. Hongyang Du, Dusit Niyato, Yuan-Ai **e, Yanyu Cheng, Jiawen Kang, and Dong In Kim. (2022). Performance analysis and optimization for jammer-aided multi-antenna uav covert communication. p. 02.

  76. Yin, L., Wang, C., & Ien, G. E. (2009). On the minimization of communication energy consumption of correlated sensor nodes. Wireless Personal Communications, 50(1), 57–67.

    Article  Google Scholar 

  77. Waqas, M., Sidhu, Gas, Jabeen, T., Ahmad, M. A., & Javed, M. A. (2018). Transmit power optimization for relay-aided multi-carrier d2d communication. Tsinghua Science & Technology, 23(1), 65–74.

    Article  Google Scholar 

  78. Kinoshita, K., Nakagawa, M., Kawano, K., & Murakami, K. (2014). An efficient spectrum sharing method based on genetic algorithm in heterogeneous wireless network. International Journal of Computer Networks & Communications, 6, 5.

    Article  Google Scholar 

  79. Xu, Z., Yuan, J., Wang, Y., Zhang, Y., & Feng, Z. (2011). Uav relay network to provide communications in mobile ad hoc networks. Journal of Tsinghua University(Science and Technology), 51(2), 150–155.

    Google Scholar 

  80. L. Shi, Y. Ye, X. Chu, and G. Lu. (2020). Computation energy efficiency maximization for a noma based wpt-mec network. IEEE Internet of Things Journal, p. (99).

  81. Zhe Liu, Qi Qi Wang, Si Yu Huang, Ling Xuan Kong, Zhong Zhuang, Qi Wang, Hua Fen Li, and Ya Nan Wan. (2022). The risks of sulfur addition on cadmium accumulation in paddy rice under different water-management conditions.

  82. B. Yang, X. Cao, J. Bassey, X. Li, and L. Qian. (2019). Computation offloading in multi-access edge computing networks: A multi-task learning approach. In ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

  83. Yu, R., Yuan, Z., Zhao, M., Yu, M., & Lu, X. (2013). Dam** based traffic allocation in wireless machine-to-machine communications networks. International Journal of Distributed Sensor Networks, 9(11), 814267.

    Article  Google Scholar 

  84. B. Yang, X. Cao, X. Li, T. Kroecker, and L. Qian. (2019). Joint communication and computing optimization for hierarchical machine learning tasks distribution. In 2019 IEEE Symposium on Computers and Communications (ISCC).

  85. Y. Du, K. Wang, K. Yang, and G. Zhang. (2019). Energy-efficient resource allocation in uav based mec system for iot devices. In 2018 IEEE Global Communications Conference (GLOBECOM).

  86. Z. Feng, Z. Na, M. **ong, and C. Ji. (2022). Multi-uav collaborative wireless communication networks for single cell edge users. Mobile Networks and Applications, pp. 1–15.

  87. X. Zhang, H. Zhang, H. Ji, and X. Li. (2020). Joint optimization of uav trajectory and relay ratio in uav-aided mobile edge computation network. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications.

  88. Youssef, M. J., Farah, J., Nour, C. A., & Douillard, C. (2017). Waterfilling-based resource allocation techniques in downlink non-orthogonal multiple access (noma) with single-user mimo. In 2017 IEEE Symposium on Computers and Communications (ISCC).

  89. Yan, K. T., Yu, M. P., Tran, N. H., Saad, W., & Hong, C. S. (2020). Energy-efficient resource management in uav-assisted mobile edge computing. IEEE Communications Letters, p. 99,

  90. Wang, X., Li, C., Yu, L., Han, L., Deng, X., Yang, E., & Ren, P. (2019). Uav first view landmark localization with active reinforcement learning. Pattern Recognition Letters, 125, 549–555.

    Article  Google Scholar 

  91. He, P., & Li, J. (2021). A joint optimization framework for wheat harvesting and transportation considering fragmental farmlands - sciencedirect. Information Processing in Agriculture, 8(1), 1–14.

    Article  MathSciNet  Google Scholar 

  92. Lei, M., Zhang, X., Yu, B., Fowler, S., & Yu, B. (2021). Throughput maximization for uav-assisted wireless powered d2d communication networks with a hybrid time division duplex/frequency division duplex scheme. Wireless Networks, 27(3), 2147–2157.

    Article  Google Scholar 

  93. Zhang, Y., Huang, A., Wang, D., Duan, X., Jiao, B., & **e, L. (2013). To enable stable medical image and video transmission in mobile healthcare services: A best-fit carrier dial-up (bcd) algorithm for gbr-oriented applications in lte-a networks. IEEE

  94. Liu, M., Wang, Y., Li, Z., Lyu, X., & Chen, Y. (2020). Joint optimization of resource allocation and multi-uav trajectory in space-air-ground iort networks. In 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).

  95. Zhang, **aochen, Zhang, Jiao, **ong, Jun, et al. (2020). Energy-efficient multi-uav-enabled multiaccess edge computing incorporating noma. IEEE Internet of Things Journal, 7(6), 5613–5627.

    Article  Google Scholar 

  96. Reza, M. N., Na, I. S., Sun, W. B., & Lee, Kyeong Hwan. (2018). Rice yield estimation based on k-means clustering with graph-cut segmentation using low-altitude uav images. Biosystems Engineering, 177, 109–121.

    Article  Google Scholar 

  97. Zhao, H., Wang, H., Wu, W., & Wei, J. (2018). Deployment algorithms for uav airborne networks toward on-demand coverage. IEEE Journal on Selected Areas in Communications

  98. Shen, F., Ding, G., Wang, Z., & Wu, Q. (2019). Uav-based 3d spectrum sensing in spectrum-heterogeneous networks. IEEE Transactions on Vehicular Technology, 68, 5711.

    Article  Google Scholar 

  99. Flamini, Roberto, & Donno, De. (2022). Danilo, Gambini, Jonathan, Giuppi, Francesco, Mazzucco, Christian, & Milani, Angelo and Laura Resteghini. An industrial viewpoint: Towards a heterogeneous smart electromagnetic environment for millimeter-wave communications.

    Google Scholar 

  100. Xu, X., Zeng, Y., Guan, Y. L., & Zhang, R. (2018). Overcoming endurance issue: Uav-enabled communications with proactive caching. IEEE Journal on Selected Areas in Communications, 36(6), 1231–1244.

    Article  Google Scholar 

  101. Qiang, C., & Wang, Y. (2016). A research on network reading guidance from the perspective of communication. Research on Library Science.

  102. YangWenjie. (2016). On the adaptation of the network novel from the perspective of media communication. Image Vision.

  103. Kcd, A., Ar, B., Mc, C., Pb, D., & Jm, E. (2016). Vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) communication in a heterogeneous wireless network - performance evaluation. Transportation Research Part C: Emerging Technologies, 68, 168–184.

    Article  Google Scholar 

  104. Zhang, T., Lei, J., Liu, Y., Feng, C., & Nallanathan, A. (2021). Trajectory optimization for uav emergency communication with limited user equipment energy: A safe-dqn approach.

  105. Wei, Y., Lai, H., **a, G., Da, G., & Hou, C. (2016). Energy-saving power allocation scheme for relay networks based on graphical method of classification. new york: Springer International Publishing.

    Book  Google Scholar 

  106. Gu, Y., Huang, Y., Hu, H., Gao, W., & Pan, Y. (2021). Energy efficiency optimization of cognitive uav-assisted edge communication for semantic internet of things. Wireless Communications and Mobile Computing., 2021, 1–12.

    Google Scholar 

  107. Ji, B., Li, Y., Zhou, B., Li, C., Song, K., & Wen, H. (2019). Performance analysis of uav relay assisted iot communication network enhanced with energy harvesting. IEEE Access, pages 38738–38747.

  108. D González González, M García Lozano, and S Ruiz Boqué. (2014). Intercell interference coordination for control channels in lte and lte-a. An optimization scheme based on evolutionary algorithms. Wireless Personal Communications, pages 1–22.

  109. Jain, A., Lopez-Aguilera, E., & Demirkol, I. (2020). User association and resource allocation in 5g (aura-5g): A joint optimization framework.

  110. Moradi, Mehrdad., Sundaresan, Karthikeyan., Chai, Eugene., & et al. (2018). Skycore: Moving core to the edge for untethered and reliable uav-based lte networks. MobiCom ’18, page 35-49, New York, NY, USA. Association for Computing Machinery.

  111. Rahman, M. T., Chowdhury, M. Z., & Jang, Y. M. (2016). Radio access network selection mechanism based on hierarchical modelling and game theory. In 2016 International Conference on Information and Communication Technology Convergence (ICTC).

  112. Abdullah, Saima, Asghar, Mamoona N., Ashraf, Mashavia, & Abbas, Naila. (2020). An energy-efficient message scheduling algorithm with joint routing mechanism at network layer in internet of things environment. Wireless Personal Communications, 111(3), 1821–1835.

    Article  Google Scholar 

  113. Huang, T., Duan, D. T., Gong, Y. J., Ye, L., & Zhang, J. (2020). Concurrent optimization of multiple base learners in neural network ensembles: An adaptive niching differential evolution approach. Neurocomputing, 396, 24–38.

    Article  Google Scholar 

  114. Tong, L., Zhu, X., Georges, H. M., Luo, Z., & Dong, W. (2016). Performance analysis of co- and cross-tier device-to-device communication underlaying macro-small cell wireless networks. KSII Transactions on Internet and Information Systems, 10(4), 1481–1500.

    Google Scholar 

  115. **song, Hu., Yongpeng, Wu., Chen, Riqing, et al. (2020). Optimal detection of uav’s transmission with beam swee** in covert wireless networks. IEEE Transactions on Vehicular Technology, 69(1), 1080–1085.

    Article  Google Scholar 

  116. **ang, X., Lin, C., & Chen, X. (2015). Ecoplan: Energy-efficient downlink and uplink data transmission in mobile cloud computing. Wireless Networks, 21(2), 453–466.

    Article  Google Scholar 

  117. Wang, Haichao, Wang, **long, Chen, **, et al. (2018). Network-connected uav communications: Potentials and challenges. China Communications, 15(12), 111–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China under Grant U20A20181; in part by the Key Research and Development Project of Hunan Province of China under Grant 2022GK2020; in part by Hunan Natural Science Foundation of China under Grant 2022JJ2059, in part by the Funding Projects of Zhejiang Lab under Grant 2021LC0AB05. (The corresponding author of this paper is Hongbo Jiang)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, Z., Chen, Y., Jiang, H. et al. Resource management in UAV-assisted MEC: state-of-the-art and open challenges. Wireless Netw 28, 3305–3322 (2022). https://doi.org/10.1007/s11276-022-03051-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03051-4

Keywords

Navigation