Log in

Secure multiple target tracking based on clustering intersection points of measurement circles in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The problem of tracking multiple targets simultaneously using a wireless sensor network is studied in this paper. We introduce a new algorithm, based only on the received signal power measurements, to estimate the location of multiple indistinguishable targets. For each node, a circle centered at the location of the node with a radius equal to the estimated distance between the node and the nearest target is drawn. The intersection points of all these measurement circles are calculated and clustered using a density-based clustering algorithm. The centroid of each generated cluster can be a candidate location, corresponding to a target. In order to choose the best candidate locations, we introduce a new robust criterion, which is capable of dealing with the problem of malicious nodes. Besides, the selected candidate is given to the Gauss–Newton iterative search method, which can increase the accuracy of tracking. We also propose three different approaches for reducing the effect of malicious nodes on the accuracy of tracking. Furthermore, a scheme is proposed for identifying the malicious nodes. We demonstrate the robustness and accuracy of our proposed tracking algorithm via simulation results and compare our results with the Multi-resolution search algorithm and the Expectation–Maximization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kang, Y., Wang, Q., Wang, J., & Chen, R. (2019). A high-accuracy TOA-based localization method without time synchronization in a three-dimensional space. IEEE Transactions on Industrial Information, 15(1), 173–182.

    Article  Google Scholar 

  2. Wang, G., So, A. M.-C., & Li, Y. (2016). Robust Convex approximation methods for TDOA-based localization under NLOS conditions. IEEE Transactions on Signal Processing, 64(13), 3281–3296.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexandridis, A., & Mouchtaris, A. (2018). Multiple sound source location estimation in wireless acoustic sensor networks using DOA estimates: the data-association problem. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(2), 342–356.

    Google Scholar 

  4. Masazade, E., & Kose, A. (2018). A proportional time allocation algorithm to transmit binary sensor decisions for target tracking in a wireless sensor network. IEEE Transactions on Signal Processing, 66(1), 86–100.

    Article  MathSciNet  MATH  Google Scholar 

  5. Beaudeau, J. P., Bugallo, M. F., & Djurić, P. M. (2015). RSSI-based multi-target tracking by cooperative agents using fusion of cross-target information. IEEE Transactions on Signal Processing, 63(19), 5033–5044.

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, Y. Y., Qi, G. Q., & Sheng, A. D. (2018). Performance metric on the best achievable accuracy for hybrid TOA/AOA target localization. IEEE Transactions on Wireless Communications, 22(7), 1474–1477.

    Google Scholar 

  7. Paul, A. K., & Sato, T. (2017). Localization in wireless sensor networks: A survey on algorithms, measurement techniques, applications and challenge. Journal of Sensor and Actuator Networks, 6(4), 1–23.

    Article  Google Scholar 

  8. Mesmoudi, A., Feham, M., & Labraoui, N. (2013). Wireless sensor networks localization algorithms: A comprehensive survey. International Journal of Computer Networks & Communications (IJCNC), 5(6), 45–64.

    Article  Google Scholar 

  9. Jhale, S. R., & Deshpande, R. S. (2019). Kalman filtering framework-based real-time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sensors Journal, 19(1), 224–233.

    Article  Google Scholar 

  10. Yu, Y. (2017). Distributed target tracking in wireless sensor networks with data association uncertainty. IEEE Communications Letters, 21(6), 1281–1284.

    Article  Google Scholar 

  11. Lagias, E., Lagkas, T. D., & Zhang, J. (2017). New RSSI-based tracking for following mobile targets using the law of cosines. IEEE Communication Letters, 7(3), 392–395.

    Article  Google Scholar 

  12. Cheng, L., Hang, J., Wang, Y., & Bia, Y. (2019). Fuzzy C-means and hierarchical voting based RSSI quantify localization method for wireless sensor network. IEEE Access, 7, 47411–47422.

    Article  Google Scholar 

  13. Mourad, F., Chehade, H., Snoussi, H., Yalaoui, F., Amodeo, L., & Richard, C. (2012). Controlled mobility sensor networks for target tracking using ant colony optimization. IEEE Transactions on Mobile Computing, 11(8), 1261–1273.

    Article  Google Scholar 

  14. Fuemmeler, J. A., & Veeravalli, V. V. (2010). Energy-efficient multi-object tracking in sensor networks. IEEE Transactions on Signal Processing, 58(7), 3742–3750.

    Article  MathSciNet  MATH  Google Scholar 

  15. Yeow, W., Tham, C., & Wong, W. (2007). Energy-efficient multiple target tracking in wireless sensor networks. IEEE Transactions on Vehicular Technology, 56(2), 918–928.

    Article  Google Scholar 

  16. Michaelides, M. P., Laoudias, C., & Panayiotou, C. G. (2014). Fault tolerant localization and tracking of multiple sources in WSNs using binary data. IEEE Transactions on Mobile Computing, 13(6), 1213–1227.

    Article  Google Scholar 

  17. Nguyen, T., Septier, F., Rajaona, H., Peters, G., Nevat, I., & Delignon, Y. (2016). A Bayesian perspective on multiple source localization in wireless sensor networks. IEEE Transactions on Signal Processing, 64(7), 1684–1699.

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, H., Wang, R., Cui, L., & Zhang, L. (2015). EasiDSlT: A two-layer data association method for multi-target tracking in wireless sensor networks. IEEE Transactions on Industrial Electronics, 62(1), 434–443.

    Article  Google Scholar 

  19. Oh, S. (2012). A scalable multi-target tracking algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks, 2012, 1–16.

    Google Scholar 

  20. Zhang, X. (2011). Adaptive control and reconfiguration of mobile wireless sensor networks for dynamic multi-target tracking. IEEE Transactions on Automatic Control, 56(10), 2429–2444.

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu, Y., Vikram, A., Fu, H., & Guan, Y. (2014). On non-cooperative multiple-target tracking with wireless sensor networks. IEEE Transactions on Wireless Communications, 13(11), 6496–6510.

    Article  Google Scholar 

  22. An, Y. K., An, C., Yoo, S., & Wells, B. E. (2014). Noise mitigation for multiple target tracking in acoustic wireless sensor networks. In 2014 IEEE military communications conference (pp. 1127–1132), Baltimore, MD, USA.

  23. Teng, J., Snoussi, H., & Richard, C. (2011). Collaborative multi-target tracking in wireless sensor networks. International Journal of Systems Science, 42(9), 1427–1443.

    Article  MathSciNet  MATH  Google Scholar 

  24. Alhasanat, A., Sharif, B., Tsimenidis, C., & Neasham, J. (2016). Efficient RSS-based collaborative localisation in wireless sensor networks. International Journal of Sensor Networks IJSNET, 22(1), 28–36.

    Google Scholar 

  25. Fu, Y., Ling, Q., & Tian, Z. (2012). Distributed sensor allocation for multi-target tracking in wireless sensor networks. IEEE Transactions on Aerospace and Electronic Systems, 48(4), 3538–3553.

    Article  Google Scholar 

  26. Liu, B., Chen, M., & Tsai, M. (2011). Message-efficient location prediction for mobile objects in wireless sensor networks using a maximum likelihood technique. IEEE Transactions on Computers, 60(6), 865–878.

    Article  MathSciNet  MATH  Google Scholar 

  27. Soderlund, A., & Kumar, M. (2018). Optimization of multitarget tracking within a sensor network via information-guided clustering. Journal of Guidance, Control and Dynamics, 42(2), 1–18.

    Google Scholar 

  28. Beard, M., Vo, B. T., & Vo, B. N. (2015). Bayesian multi-target tracking with merged measurements using labeled random finite sets. IEEE Transactions on Signal Processing, 63(6), 1433–1447.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sheng, X., & Hu, Y. (2005). Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Transactions on Signal Processing, 53(1), 44–53.

    Article  MathSciNet  MATH  Google Scholar 

  30. Dranka, E., & Coelho, R. (2014). Robust maximum likelihood acoustic energy based source localization in correlated noisy sensing environments. IEEE Journal of Selected Topics in Signal Processing, 9(2), 259–267.

    Article  Google Scholar 

  31. **ao, K., Wang, R., Zhang, L., Li, J., & Fun, T. (2017). ASMT: An augmented state-based multi-target tracking algorithm in wireless sensor networks. International Journal of Distributed Sensor Networks, 13(4), 1–9.

    Article  Google Scholar 

  32. **n, K., Cheng, P., & Chen, J. (2015). Multi-target localization in wireless sensor networks: A compressive sampling-based approach. Wireless Communications and Mobile Computing, 15(5), 801–811.

    Article  Google Scholar 

  33. Qian, P., Guo, Y., Li, N., & Yang, S. (2019). Variational Bayesian inference-based multiple target localization in WSNs with quantized received signal strength. IEEE Access, 7, 60228–60241.

    Article  Google Scholar 

  34. Sun, B., Guo, Y., Li, N., & Fang, D. (2017). Multiple target counting and localization using variational Bayesian EM algorithm in wireless sensor networks. IEEE Transactions on Communications, 65(7), 2986–2998.

    Article  Google Scholar 

  35. Goldsmith, A. (2005). Path loss and shadowing. In A. Goldsmith (Ed.), Wireless communications (pp. 24–46). New York: Cambridge University Press.

    Chapter  Google Scholar 

  36. Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large partial databases with noise. In Proceedings of the second international conference on knowledge discovery and data mining (KDD-96) (pp. 226–231).

  37. Suthar, N., Rajput, I. J., & Gupta, V. K. (2013). A technical survey on DBSCAN clustering algorithm. International Journal of Scientific & Research, 4(5), 1775–1781.

    Google Scholar 

  38. Hansen, P. C., Pereyra, V., & Scherer, G. (2013). Algorithms for solving non-linear LSQ problems. In P. C. Hansen, V. Pereyra, & G. Scherer (Eds.), Least squares data fitting with applications (pp. 163–175). Baltimore, MD: The John Hopkins University Press.

    Chapter  MATH  Google Scholar 

  39. Kelley, T. (1999). Nonlinear least squares. In C. T. Kelley (Ed.), Iterative methods for optimization (pp. 22–30). Philadelphia: Society for Industrial and Applied Mathematics.

    Chapter  MATH  Google Scholar 

  40. Kelley, T. (1999). Global convergence. In C. T. Kelley (Ed.), Iterative methods for optimization (pp. 39–48). Philadelphia: Society for Industrial and Applied Mathematics.

    Chapter  MATH  Google Scholar 

  41. Allaire, G., & Kaber, S. M. (2008). Operation count and complexity (Chapter 4.2). Introduction to algorithms (Chapter 4). In Numerical linear algebra. Texts in Applied Mathematics (Vol. 55, pp. 63–65). New York, USA: Springer.

  42. Tomic, I., & McCann, J. A. (2017). A survey of potential security issues in existing wireless sensor network protocols. IEEE Internet of Things Journal, 4(6), 1910–1923.

    Article  Google Scholar 

  43. Sen, J. (2009). A survey on wireless sensor network security. International Journal of Communication Networks and Information Security (IJCNIS), 1(2), 43–49.

    Google Scholar 

  44. Basilico, N., Gatti, N., Monga, M., & Sicari, S. (2014). Security games for node localization through verifiable multilateration. IEEE Transactions on Dependable and Secure Computing, 11(1), 72–85.

    Article  Google Scholar 

  45. Misra, S., Xue, G., & Bhardwaj, S. (2009). Secure and robust localization in a wireless ad hoc environment. IEEE Transactions on Vehicular Technology, 58(3), 1480–1489.

    Article  Google Scholar 

  46. Madsen, T. K., Nielsen, J., Garcia, M., Poblacion, A., Marques, H., & Sucasas, V. (2012). Inaccuracy of location information as a consequence of data collection delay and presence of misbehaving and malicious nodes. In International conference on localization and GNSS (pp. 1–6), Starnberg, Germany.

  47. Garg, R., Varna, A., & Wu, M. (2012). An efficient gradient descent approach to secure localization in resource constrained wireless sensor networks. IEEE Transactions on Information Forensics and Security, 7(2), 717–730.

    Article  Google Scholar 

  48. Oracevic, A., Akbas, S., & Ozdemir, S. (2017). Secure and reliable object tracking in wireless sensor networks. Computers and Security, 70(1), 307–317.

    Article  Google Scholar 

  49. Moara-Nkwe, K., Shi, Q., Lee, G. M., & Eiza, M. H. (2018). A novel physical layer secure key generation and refreshment scheme for wireless sensor networks. IEEE Access, 4, 11374–11387.

    Article  Google Scholar 

  50. Tamtalini, M. A., El Alaoui, A., & El Fergougui, A. (2019). A grid based joint localization and packet routing algorithm in wireless sensor networks. In International conference on systems of collaboration Big Data, Internet of Things & Security (SysCoBIoTS) (pp. 1–6), Casablanca, Morocco.

  51. Meng, W., **ao, W., & **e, L. (2011). An efficient EM algorithm for energy-based multisource localization in wireless sensor networks. IEEE Transactions on Instrumentation and Measurement, 60(3), 1017–1027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghazizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhami, M.H., Ghazizadeh, R. Secure multiple target tracking based on clustering intersection points of measurement circles in wireless sensor networks. Wireless Netw 27, 1233–1249 (2021). https://doi.org/10.1007/s11276-020-02510-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02510-0

Keywords

Navigation