Log in

MICROBIAL isoprene production: an overview

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Isoprene, a volatile C5 hydrocarbon, is a precursor of synthetic rubber and an important building block for a variety of natural products, solely being produced by petrochemical routes. To mitigate the ever-increasing contribution of petrochemical industry to global warming through significant carbon (CO2) evolution, bio-based process for isoprene production using microbial cell factories have been explored. Highly efficient fermentation-based processes have been studied for little over a decade now with extensive research on the rational strain development for creating robust strains for commercial isoprene production. Most of these studies involved sugars as feedstocks and using naturally occurring isoprene pathways viz., mevalonate and methyl erythritol pathway in E. coli. Recent advances, driven by efforts in reducing environmental pollution, have focused on utilization of inorganic CO2 by cyanobacteria or syngas from waste gases by acetogens for isoprene production. This review endeavors to capture the latest relevant progress made in rational strain development, metabolic engineering and synthetic biology strategies used, challenges in fermentation process development at lab and commercial scale production of isoprene along with a future perspective pertaining to this area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ajikumar PK, **ao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aldridge J, Carr S, Weber KA, Baun NR (2021) Anaerobic production of isoprene by engineered methanosarcina species archaea. Appl Environ Microbiol 87:e02417-e2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11:13–19

    Article  CAS  PubMed  Google Scholar 

  • Beck ZQ, Cervin MA, Chotani GK, Peres CM, Sanford KJ, Scotcher MC, Wells DH, Whited GM (2013) Compositions and methods of producing isoprene and/or industrial bio-products using anaerobic microorganisms. WO2013181647A2

  • Beck ZQ, Whited GM, Cervin MA, Chotani GK, Diner BA, Fan J, Peres CM, Sanford KJ, Scotcher MC, Wells DH (2014) Recombinant anaerobic acetogenic bacteria for production of isoprene and/or industrial bio-products using synthesis gas. US20140234926A1

  • Carr S, Aldridge J, Buan N (2021) Isoprene production from municipal wastewater biosolids by engineered archaeon Methanosarcina acetivorans. Appl Sci 11(8):3342

    Article  CAS  Google Scholar 

  • Cervin MA, Valle, Whited GM, Chotani GK, Feher FJ, La Duca R, McAuliffe JC, Miasnikov A, Peres CM, Puhala AS, Sanford KJ (2014) Compositions and methods for producing isoprene. US8709785

  • Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681

    Article  CAS  PubMed  Google Scholar 

  • Chaves JE, Melis A (2018) Biotechnology of cyanobacterial isoprene production. Appl Microbiol Biotechnol 102(15):6451–6458

    Article  CAS  PubMed  Google Scholar 

  • Chen HT, Lin MS, Hou SY (2008) Multiple-copy-gene integration on chromosome of Escherichia coli for beta-galactosidase production. Korean J Chem Eng 25:1082–1087

    Article  CAS  Google Scholar 

  • Chen WY, Liew, F, Koepke M (2013a) Recombinant microorganisms and uses therefor. US2013a0323820

  • Chen Y, Shen H, Cui Y, Chen S, Weng Z, Zhao M, Liu J (2013b) Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnol 13:6–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Liu H, Zou H, Chen N, Shi M, **e C, Zhao G, **an M (2017) Enzymatic process optimization for the in vitro production of isoprene from mevalonate. Microb Cell Fact 16(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chotani GK, McAuliffe JC, Miller MC, MUIR RE, Vaviline DV, Weyler W (2013) Isoprene production using the DXP and MVA pathway. US8507235B2

  • Diner BA, Fan J, Scotcher MC, Wells DH, Whited GM (2018) Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the conversion of fructose and of syngas to mevalonate and isoprene. Appl Environ Microbiol 84:e01723–e1817. https://doi.org/10.1186/s13568-017-0461-7

    Article  CAS  PubMed  Google Scholar 

  • Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD (2011) Alpha-ketoglutarate coordinates carbon and nitrogen utilization via Enzyme I inhibition. Nat Chem Biol 7:894–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17:57–61

    Article  CAS  PubMed  Google Scholar 

  • Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler JP, Loreto F (2008) Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 55:687–697

    Article  CAS  PubMed  Google Scholar 

  • Furutani M, Uenishi A, Iwasa K, Jennewein S, Fischer R (2017) Recombinant cell, and method for producing isoprene. US9783828B2

  • Gao X, Gao F, Liu D, Zhang H, Nie X, Yang C (2016) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci 9:1400–1411

    Article  CAS  Google Scholar 

  • Garcez Lopes MS, Slovic AM (2014) Methods for production of a terpene and a co-product. WO 2014036140A2

  • Gomaa L, Loscar ME, Zein HS, Ghafar NA, Abdelhadi AA, Abdelaal AS, Abdallah NA (2017) Boosting isoprene production via heterologous expression of the Kudzu isoprene synthase gene (kIspS) into Bacillus spp. cell factory. Appl Microbiol Biotechnol Express 7:161

    Google Scholar 

  • Guo J, Cao Y, Liu H, Zhang R, Mo X, Liu H (2019) Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways. Appl Microbiol Biotechnol 103(6):2597–2608. https://doi.org/10.1007/s00253-018-09578-x

    Article  CAS  PubMed  Google Scholar 

  • Heracleous E, Pachatouridou E, Louie L, Dugar D, Lappas A (2020) Efficient route for the production of isoprene via decarboxylation of bioderived mevalonolactone. ACS Catal 10:9649–9661

    Article  CAS  Google Scholar 

  • Hong SY, Zurbriggen AS, Melis A (2012) Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J Appl Microbiol 113(1):52–65

    Article  CAS  PubMed  Google Scholar 

  • Janke C, Gaida S, Jennewein S (2020) The production of isoprene from cellulose using recombinant Clostridium cellulolyticum strains expressing isoprene synthase. MicrobiologyOpen 9(4):e1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Jennifer L, Musters MWJM, Bekker M, Bellomo D, Fiedler T, de Vos WM, Hugenholtz J, Kreikemeyer B, Kummer U, Teusink B (2012) Role of phosphate in the central metabolism of two lactic acid bacteria—a comparative systems biology approach. FEBS J 279:1274–1290

    Article  CAS  Google Scholar 

  • Jo SY, Cha MS, Yoo MS, Kim, SW (2018) Optimization of isoprene production using a metabolically engineered Escherichia coli in ‘Microbial Engineering’ Prof. Eli Keshavarz-Moore, University College London, England Dr. Barry Buckland, BiologicB, USA Eds, ECI Symposium Series (2018). https://dc.engconfintl.org/microbial/20

  • Joshi H, Isar J, Jain D, Badle S, Dhoot S, Rangaswamy V (2021) C/N ratio and specific growth rate plays important role on enhancing isoprene production in recombinant Escherichia coli. Appl Biochem Biotechnol 193:2403–2419

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Wang C, Jang HJ, Cha MS, Park JE, Jo SY, Choi ES, Kim SW (2016) Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts. Microb Cell Fact 15(1):214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar R, Shimizu K (2010) Metabolic regulation of Escherichia coli and its gdhA, glnL, gltB, D mutants under different carbon and nitrogen limitations in the continuous culture. Microb Cell Fact 9:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuzma J, Marshall MN, Pollock WH, Fall R (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30:97–103

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Park JH, Kim WK, Lee JG, Lee JS, Ahn JO, Lee EG, Lee HW (2020) Engineered Escherichia coli strains as platforms for biological production of isoprene. FEBS Open Biol 10:780–788

    Article  CAS  Google Scholar 

  • Lee HW, Park JH, Lee HS, Choi W, Seo SH, Anggraini ID, Choi ES, Lee HW (2019) Production of bio-based isoprene by the mevalonate pathway cassette in Ralstonia eutropha. J Microbiol Biotechnol 29(10):1656–1664

    Article  CAS  PubMed  Google Scholar 

  • Li M, Chen H, Liu C, Guo J, Xu X, Zhang H, Nian R, **an M (2019) Improvement of isoprene production in Escherichia coli by rational optimization of RBSs and key enzymes screening. Microb Cell Fact 18(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK (2000) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:785–789

    Article  CAS  PubMed  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cao Y, Guo J, Xu X, Long Q, Song L, **an M (2021) Study on the isoprene-producing co-culture system of Synechococcus elongates-Escherichia coli through omics analysis. Microb Cell Fact 20(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Cheng T, Zou H, Zhang H, Xu X, Sun C, Aboulnag E, Cheng Z, Zhao G, **an M (2017) High titer mevalonate fermentation and its feeding as a building block for isoprenoids (isoprene and sabinene) production in engineered Escherichia coli. Process Biochem 62:1–9

    Article  CAS  Google Scholar 

  • Liu H, Sun Y, Ramos KRM, Nisola GM, Valdehuesa KNG, Lee WK, Park SJ, Chung WJ (2013) Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli. PLoS ONE 8:1–7

    Google Scholar 

  • Liu CL, Dong HG, Zhan J, Liu X, Yang Y (2019) Multi-modular engineering for renewable production of isoprene via mevalonate pathway in Escherichia coli. J Appl Microbiol 126:1128–1139

    Article  CAS  PubMed  Google Scholar 

  • Lv X, **e W, Lu W, Guo F, Gu J, Yu H, Ye L (2014) Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 186:128–136

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Xu H, Yu H (2013) Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol 97:2357–2365

    Article  CAS  PubMed  Google Scholar 

  • Marcellin E, Behrendorff JB, Nagaraju S, DeTissera S, Segovia S, Palfreyman R, James D, Cassani CL, Quek LK, Speight R, Hodson MP, Simpson SD, Mitchell WP, Mitchell WP, WP, Kopke M and Nielsen LR, (2016) Low carbon fuels and commodity chemicals from waste gases—systematic approach to understand energy metabolism in a model acetogen. Green Chem 18:3020–3028

    Article  CAS  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  PubMed  Google Scholar 

  • Miller B, Oschinski C, Zimmer W (2001) First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 213:483–487

    Article  CAS  PubMed  Google Scholar 

  • Nisar A, Khan S, Hameed M, Nisar A, Ahmad H, Sardar Azhar Mehmood SA (2021) Bio-conversion of CO2 into biofuels and other value-added chemicals via metabolic engineering. Microbiol Res 251:126813

    Article  CAS  PubMed  Google Scholar 

  • Nitta N, Tajima Y, Katashkina JI, Yamamoto Y, Onuki A, Rachi H, Kazieva E, Nishio Y (2019) Application of inorganic phosphate limitation to efficient isoprene production in Pantoea ananatis. J of Appl Microbiol 128:763–774

    Article  CAS  Google Scholar 

  • Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9(2):193–207

    Article  CAS  PubMed  Google Scholar 

  • Ramos KRM, Valdehuesa KNG, Liu H, Nisola GM, Le WK, Chung WJ (2014) Combining De Ley–Doudoroff and methylerythritol phosphate pathways for enhanced isoprene biosynthesis from D-galactose. Bioprocess Biosyst Eng 37:2505–2513

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi MA, Ferraz CA, Scrutton NS (2022) Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep. https://doi.org/10.1039/d1np00025j

    Article  PubMed  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  CAS  PubMed  Google Scholar 

  • Sethia P, Ahuja M, Rangaswamy V (2019) Metabolic engineering of microorganisms to produce isoprene. J Microb Biochem Technol 11(4):73–81

    Google Scholar 

  • Shaikh KM, Odaneth AA (2021) Metabolic engineering of Yarrowia lipolytica for the production of isoprene. Biotechnol Prog 37(6):e3201

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DF (2005) Evolution of the isoprene biosynthetic pathway in Kudzu. Plant Physiol 137:700–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver GM, Fall R (1991) Enzymatic synthesis of isoprene from DMAPP in aspen leaf extracts. Plant Physiol 97:1588–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivy TL, Fall R, Rosenstiel TN (2011) Evidence of isoprenoid precursor toxicity in Bacillus subtilis. Biosci Biotechnol Biochem 75:2376–2383

    Article  CAS  PubMed  Google Scholar 

  • Song J, Cho KK, Lee KS, La YH, Kalyuzhnaya M (2017) Method for producing isoprene using recombinant halophilic methanotroph. U.S. Patent US20170211100A1

  • Sun C, Theodoropoulos C, Scrutton NS (2020) Techno-economic assessment of microbial limonene production. Bioresource Technol 300:122666

    Article  CAS  Google Scholar 

  • Taylor PA, Inaba Y, Pinto IJ (2016) Large-scale fermentation of E. coli for the production of high-purity isoprene senior design reports (CBE) 79

  • Vickers CE, Sabri S (2015) Isoprene. In: Schrader J, Bohlmann J (eds) Biotechnology of Isoprenoids Advances Biochemical Engineering/Biotechnology. Springer, Cham

    Google Scholar 

  • Volke DC, Rohwer J, Fischer R, Jennewein S (2019) Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis. Microb Cell Fact 18:192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wadhwa M, Srinivasan S, Bachhawat AK, Venkatesh KV (2018) Role of phosphate limitation and pyruvate decarboxylase in rewiring of the metabolic network for increasing flux towards isoprenoid pathway in a TATA binding protein mutant of Saccharomyces cerevisiae. Microb Cell Fact 17:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Li R, Yi X, Fang T, Yang J, Bae HJ (2016) Isoprene production on enzymatic hydrolysate of peanut hull using different pretreatment methods. BioMed Res Int. https://doi.org/10.1155/2016/4342892

    Article  PubMed  PubMed Central  Google Scholar 

  • Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, Ben-Shoshan EA, Sanford KJ (2010) Technology update: development of a gas-phase bioprocess for isoprene monomer production using metabolic pathway engineering. Ind Biotechnol 6:152–163

    Article  CAS  Google Scholar 

  • **ao Y, Chu L, Sanakis Y, Liu P (2009a) Revisiting the IspH catalytic system in the deoxyxylulose phosphate pathway: achieving high activity. J Am Chem Soc 131:9931–9933

    Article  CAS  PubMed  Google Scholar 

  • **ao Y, Zahariou G, Sanakis Y, Liu P (2009b) IspG enzyme activity in the deoxyxylulose phosphate pathway: roles of the iron–sulfur cluster. Biochemistry 48:10483–10485

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Gao X, Jiang Y, Sun B, Gao F, Yang S (2016) Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng 37:79–91

    Article  CAS  PubMed  Google Scholar 

  • Yang J, **an M, Su S, Zhao G, Nie Q, Jiang X, Zheng Y, Liu W (2012) Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. PLoS ONE 7(4):e33509. https://doi.org/10.1371/journal.pone.0033509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye L, Lv X, Yu H (2016) Engineering microbes for isoprene production. Metab Eng 38:125–138

    Article  CAS  PubMed  Google Scholar 

  • Yeom S-J, Kim M, Kim SK, Lee D-H, Kwon KK, Lee H, Kim H, Kim D-M, Lee S-G (2018) Molecular and biochemical characterization of a novel isoprene synthase from Metrosideros polymorph. Plant Biol 18:118. https://doi.org/10.1186/s12870-018-1315-4

    Article  CAS  Google Scholar 

  • Zhao L, Chang W, **ao Y, Liu H, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurbriggen A, Kirst H, Melis A (2012) Isoprene production via the mevalonic acid pathway in Escherichia coli (bacteria). BioEnerg Res 5:814–828

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

VR and JI wrote the main manuscript text and prepared the figure and table JI, DJ, HJ and SD performed the literature review All authors reviewed the manuscript

Corresponding author

Correspondence to Vidhya Rangaswamy.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isar, J., Jain, D., Joshi, H. et al. MICROBIAL isoprene production: an overview. World J Microbiol Biotechnol 38, 122 (2022). https://doi.org/10.1007/s11274-022-03306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03306-4

Keywords

Navigation