Log in

Performance of Xanthate-Modified Multi-Walled Carbon Nanotubes on Adsorption of Lead Ions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A novel adsorbent was prepared by introducing xanthate group onto pristine multi-walled carbon nanotubes (MWCNTs) for removing Pb (II) from aqueous solution. The structure and property of xanthate-modified MWCNT (MWCNT-X) were detected by the technologies of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and Brunauer–Emmett–Teller (BET). The investigation of various parameters, such as initial metal concentration, pH, contact time, and temperature, was taken to illustrate the adsorption behaviors of Pb (II) on MWCNT-X. Based on experimental data, Langmuir isotherm and pseudo-second-order kinetic provided a better correspondence to the adsorption process. The negative values of ΔG θand ΔH θ indicated that the adsorption process is exothermic and spontaneous. Besides, the maximum uptake of MWCNT-X reached to 83.01 mg/g, which was much higher than that of pristine MWCNT and hydroxylated MWCNT (MWCNT-OH). Thus, the MWCNT-X can be potentially applied in heavy metal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Shannag M., Al-Qodah Z., Bani-Melhem K., Qtaishat M.R., & Alkasrawi M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chemical Engineering Journal, 260, 749–756.

    Article  CAS  Google Scholar 

  • Awual M.R. (2016). Assessing of lead(III) capturing from contaminated wastewater using ligand doped conjugate adsorbent. Chemical Engineering Journal, 289, 65–73.

    Article  CAS  Google Scholar 

  • Bai L., Hu H., Fu W., Wan J., Cheng X., Zhuge L., **ong L., & Chen Q. (2011). Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions. Journal of Hazardous Materials, 195, 261–275.

    Article  CAS  Google Scholar 

  • Bulut, Y., & Tez, Z. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption. J Environ Sci-China, 19(2), 160–166.

    Article  CAS  Google Scholar 

  • Chand P., Bafana A., & Pakade Y.B. (2015). Xanthate modified apple pomace as an adsorbent for removal of Cd (II), Ni (II) and Pb (II), and its application to real industrial wastewater. International Biodeterioration and Biodegradation, 97, 60–66.

    Article  CAS  Google Scholar 

  • Chensun S., Amano Y., Machida M., & Bull F.I. (2015). Adsorption of Pb (II) from aqueous solution on oxidized activated carbon fibers. Bulletin of the Chemical Society of Japan, 88, 127–132.

    Article  Google Scholar 

  • Ge F., Li M.M., Ye H., & Zhao B.X. (2012). Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. Journal of Hazardous Materials, 211-212, 366–372.

    Article  CAS  Google Scholar 

  • Gao, T., Yu, J., Zhou, Y., & Jiang, X. (2017). The synthesis of graphene oxide functionalized with dithiocarbamate group and its prominent performance on adsorption of lead ions. J Taiwan Inst Chem E, 71, 426–432.

    Article  CAS  Google Scholar 

  • Heidari A., Younesi H., & Mehraban Z. (2009). Removal of Ni (II), Cd (II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chemical Engineering Journal, 153(1–3), 70–79.

    Article  CAS  Google Scholar 

  • Hu R., Wang X., Dai S., Shao D., Hayat T., & Alsaedi A. (2015). Application of graphitic carbon nitride for the removal of Pb(II) and aniline from aqueous solutions. Chemical Engineering Journal, 260, 469–477.

    Article  CAS  Google Scholar 

  • Jahangiri M., Kiani F., Tahermansouri H., & Rajabalinezhad A. (2015). The removal of lead ions from aqueous solutions by modified multi-walled carbon nanotubes with 1-isatin-3-thiosemicarbazone. Journal of Molecular Liquids, 212, 219–226.

    Article  CAS  Google Scholar 

  • Ji F., Li C., Tang B., Xu J., Lu G., & Liu P. (2012). Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution. Chemical Engineering Journal, 209, 325–333.

    Article  CAS  Google Scholar 

  • Kılıç M., Kırbıyık Ç., Çepelioğullar Ö., & Pütün A.E. (2013). Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Applied Surface Science, 283, 856–862.

    Article  Google Scholar 

  • Ling, X.L., Wei, Y.Z., Zou, L.M., Zou, L.M., & Xu, S. (2013). Preparation and characterization of hydroxylated multi-walled carbon nanotubes. Colloid Surface A, 421, 9–15.

    Article  CAS  Google Scholar 

  • Liu, D., Li, Z., Li, W., Zhong, Z., Xu, J., Ren, J., & Ma, Z. (2013). Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres. Industrial and Engineering Chemistry Research, 52(32), 11036–11044.

    Article  CAS  Google Scholar 

  • Liang, S., Guo, X., Feng, N., & Tian, Q. (2009). Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions. Journal of Hazardous Materials, 170(1), 425–429.

    Article  CAS  Google Scholar 

  • Li Y., Xu C., Qiu T., & Xu X. (2015). Crosslinked electro-spun chitosan nanofiber mats with cd (II) as template ions for adsorption applications. Journal of Nanoscience and Nanotechnology, 15, 4245–4254.

    Article  CAS  Google Scholar 

  • Malgras V., Ji Q., Kamachi Y., Mori T., Shieh F.K., Wu K.C., & Bull Y.Y. (2015). Templated synthesis for nanoarchitectured porous materials. Bulletin of the Chemical Society of Japan, 88, 1171–1200.

    Article  CAS  Google Scholar 

  • Ma, T., Chang, P.R., Zheng, P., Zhao, F., & Ma, X. (2014). Fabrication of ultra-light graphene-based gels and their adsorption of methylene blue. Chemical Engineering Journal, 240, 595–600.

    Article  CAS  Google Scholar 

  • Ma, X., Liu, X., Anderson, D. P., & Chang, P.R. (2015). Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chemistry, 181, 133–139.

    Article  CAS  Google Scholar 

  • Momčilović M., Purenović M., Bojić A., Zarubica A., & Ranđelović M. (2011). Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination, 276(1–3), 53–59.

    Google Scholar 

  • Min M., Shen L., Hong G., Zhu M., Zhang Y., Wang X., Chen Y., & Hsiao B.S. (2012).  Micro-nano structure poly (ether sulfones)/poly (ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution. Chemical Engineering Journal, 197, 88–100.

    Article  CAS  Google Scholar 

  • Mishra P. C., & Patel R.K. (2009).  Removal of lead and zinc ions from water by low cost adsorbents. Journal of Hazardous Materials, 168(1), 319–325.

    Article  CAS  Google Scholar 

  • Mubarak, N.M., Sahu, J.N., Abdullah, E.C., & Jayakumar, N.S. (2014). Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique. Separation and Purification Reviews, 43(4), 311–338.

    Article  CAS  Google Scholar 

  • Najafi M., Yousefi Y., & Rafati A.A. (2012).  Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Separation and Purification Technology, 85, 193–205.

    Article  CAS  Google Scholar 

  • Sevilla, M., & Fuertes, A.B. (2012). Highly porous S-doped carbons. Micropor Mesopor Mat, 158, 318–323.

    Article  CAS  Google Scholar 

  • Shaker M.A. (2015). Adsorption of Co (II), Ni (II) and Cu (II) ions onto chitosan-modified poly (methacrylate) nanoparticles: dynamics, equilibrium and thermodynamics studies. J Taiwan Inst Chem E, 57, 111–122.

    Article  CAS  Google Scholar 

  • Tan P., Sun J., Hu Y., Fang Z., Bi Q., Chen Y., & Cheng J. (2015). Adsorption of Cu(2+), Cd(2+) and Ni(2+) from aqueous single metal solutions on graphene oxide membranes. Journal of Hazardous Materials, 297, 251–260.

    Article  CAS  Google Scholar 

  • Wu, C., Wang, H., Wei, Z., Li, C., & Luo, Z. (2015). Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: Preparation, characterization and their adsorption properties towards heavy metal ions. Applied Surface Science, 346, 207–215.

    Article  CAS  Google Scholar 

  • **a, Y., Zhu, Y., & Tang, Y. (2012). Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide. Carbon, 50(15), 5543–5553.

    Article  CAS  Google Scholar 

  • Yu J.G., Yue B.Y., Wu X.W., Liu Q., Jiao F.P., Jiang X.Y., & Chen X.Q. (2016). Removal of mercury by adsorption: a review. Environemental Science and Pollution Research, 23(6), 5056–5076.

    Article  CAS  Google Scholar 

  • Zang, Z., Hu, Z., Li, Z., He, Q., & Chang, X. (2009). Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions. Journal of Hazardous Materials, 172(2–3), 958–963.

    Article  CAS  Google Scholar 

  • Zare-Dorabei R., Ferdowsi S.M., Barzin A., & Tadjarodi A. (2016). Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd (II), Ni (II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2′-dipyridylamine: central composite design optimization. Ultrasonics Sonochemistry, 32, 265–276.

    Article  CAS  Google Scholar 

  • Zhou, L., Liu, J., & Liu, Z. (2009b). Adsorption of platinum (IV) and palladium (II) from aqueous solution by thiourea-modified chitosan microspheres. Journal of Hazardous Materials, 172(1), 439–446.

    Article  CAS  Google Scholar 

  • Zhou, L., Wang, Y., Liu, Z., & Huang, Q. (2009a). Characteristics of equilibrium, kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions by thiourea-modified magnetic chitosan microspheres. Journal of Hazardous Materials, 16(2–3), 995–1002.

    Article  Google Scholar 

  • Zhou S., Liu F., Zhang Q., Chen B.Y., Lin C.J., & Chang C.T. (2015). Preparation of polyacrylonitrile/ferrous chloride composite nanofibers by electrospinning for efficient reduction of Cr (VI). Journal of Nanoscience and Nanotechnology, 15, 5823–5832.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21571191 and No. 21471163) and Provincial Natural Science Foundation of Hunan (2016JJ1023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **nyu Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, T., Yu, J., Zhou, Y. et al. Performance of Xanthate-Modified Multi-Walled Carbon Nanotubes on Adsorption of Lead Ions. Water Air Soil Pollut 228, 172 (2017). https://doi.org/10.1007/s11270-017-3359-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3359-8

Keywords

Navigation