Log in

Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and ethanol. The TBAB is composed of pelleted diatomaceous earth filter media inoculated with filamentous fungi species, which served as the principle biodegrading microorganism. The removal efficiencies of 5 ppmv of chloroform mixed with different ratios of ethanol as cometabolite (25, 50, 100, 150, and 200 ppmv) ranged between 69.9 and 80.9%. The removal efficiency, reaction rate kinetics, and the elimination capacity increased proportionately with an increase in the cometabolite concentration. The carbon recovery from the TBAB amounted to 69.6% of the total carbon input. It is postulated that the remaining carbon contributed to excess biomass yield within the system. Biomass control strategies such as starvation and stagnation were employed at different phases of the experiment. The chloroform removal kinetics provided a maximum reaction rate constant of 0.0018 s−1. The highest ratio of chemical oxygen demand (COD)removal/nitrogenutilization was observed at 14.5. This study provides significant evidence that the biodegradation of a highly chlorinated methane can be favored by cometabolism in a fungi-based TBAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ATSDR (1997). Toxicological profile for chloroform. http://www.atsdr.cdc.gov/toxprofiles/tp6-c5.pdf. Accessed 17 August 2016.

  • ATSDR (1998). Chloroform: potential for human exposure. http://www.atsdr.cdc.gov/toxprofiles/tp6-c5.pdf. Accessed 11 October 2014.

  • Bagley, D. M., Lalonde, M., Kaseros, V., Stasiuk, K. E., & Sleep, B. E. (2000). Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform. Water Research, 34(1), 171–178.

    Article  CAS  Google Scholar 

  • Balasubramanian, P., Philip, L., & Bhallamudi, S. M. (2011). Biodegradation of chlorinated and non-chlorinated VOCs from pharmaceutical industries. Applied Biochemistry and Biotechnology, 163(4), 497–518.

    Article  CAS  Google Scholar 

  • Butler, J., Ramchandani, C., & Thomson, D. (1935). 58. The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols. Journal of the Chemical Society (Resumed), 280–285.

  • Cai, Z., Kim, D., & Sorial, G. A. (2004). Evaluation of trickle-bed air biofilter performance for MEK removal. Journal of Hazardous Materials, 114(1), 153–158.

    Article  CAS  Google Scholar 

  • Cai, Z., Kim, D., & Sorial, G. A. (2005). Removal of methyl isobutyl ketone from contaminated air by trickle-bed air biofilter. Journal of Environmental Engineering, 131(9), 1322–1329.

    Article  CAS  Google Scholar 

  • CARB (1990). Chloroform as a toxic air contaminant. http://www.arb.ca.gov/toxics/id/summary/chloroform_A.pdf. Accessed 17 August 2016.

  • Cecen, F., & Aktas, Ö. (2011). Activated carbon for water and wastewater treatment: integration of adsorption and biological treatment: Wiley.

  • Chen, F., Freedman, D. L., Falta, R. W., & Murdoch, L. C. (2012). Henry’s law constants of chlorinated solvents at elevated temperatures. Chemosphere, 86(2), 156–165.

    Article  CAS  Google Scholar 

  • Chheda, D., & Sorial, G. A. (2016). Effect of a ternary mixture of volatile organic compounds on degradation of TCE in biotrickling filter systems. Water, Air, & Soil Pollution, 227(7), 1–11.

    Article  CAS  Google Scholar 

  • Clescerl, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard methods for examination of water and wastewater.

  • Converse, B., Schroeder, E., Iranpour, R., Cox, H., & Deshusses, M. (2003). Odor and volatile organic compound removal from wastewater treatment plant headworks ventilation air using a biofilter. Water Environment Research, 75(5), 444–454.

    Article  CAS  Google Scholar 

  • Cox, H., Deshusses, M., Converse, B., Schroeder, E., & Iranpour, R. (2002). Odor and volatile organic compound treatment by biotrickling filters: pilot-scale studies at hyperion treatment plant. Water Environment Research, 74(6), 557–563.

    Article  CAS  Google Scholar 

  • Devinny, J. S., Deshusses, M. A., & Webster, T. S. (1998). Biofiltration for air pollution control: CRC press.

  • Field, J., & Sierra-Alvarez, R. (2004). Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Bio/Technology, 3(3), 185–254.

    Article  CAS  Google Scholar 

  • Frascari, D., Pinelli, D., Nocentini, M., Fedi, S., Pii, Y., & Zannoni, D. (2006). Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1. Applied Microbiology and Biotechnology, 73(2), 421–428.

    Article  CAS  Google Scholar 

  • Frascari, D., Pinelli, D., Nocentini, M., Baleani, E., Cappelletti, M., & Fedi, S. (2008). A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp. PB1. Biochemical Engineering Journal, 42(2), 139–147.

    Article  CAS  Google Scholar 

  • FRTR (2002). Remediation technologies screening matrix and reference guide, version 4.0. https://frtr.gov/matrix2/section1/toc.html. Accessed 17 August 2016.

  • García‐Peña, E. I., Hernández, S., Favela‐Torres, E., Auria, R., & Revah, S. (2001). Toluene biofiltration by the fungus Scedosporium apiospermum TB1. Biotechnology and Bioengineering, 76(1), 61–69.

    Article  Google Scholar 

  • Haag, W. R., & Yao, C. D. (1992). Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environmental Science & Technology, 26(5), 1005–1013.

    Article  CAS  Google Scholar 

  • Hardison, L. K., Curry, S. S., Ciuffetti, L. M., & Hyman, M. R. (1997). Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp. Applied and Environmental Microbiology, 63(8), 3059–3067.

    CAS  Google Scholar 

  • Hassan, A. A., & Sorial, G. (2009). Biological treatment of benzene in a controlled trickle bed air biofilter. Chemosphere, 75(10), 1315–1321.

    Article  Google Scholar 

  • Hassan, A. A., & Sorial, G. A. (2010a). Biofiltration of n‐hexane in the presence of benzene vapors. Journal of Chemical Technology and Biotechnology, 85(3), 371–377.

    Article  CAS  Google Scholar 

  • Hassan, A. A., & Sorial, G. A. (2010b). A comparative study for destruction of n-hexane in trickle bed air biofilters. Chemical Engineering Journal, 162(1), 227–233.

    Article  Google Scholar 

  • Hassan, A. A., & Sorial, G. A. (2010c). Removal of benzene under acidic conditions in a controlled trickle bed air biofilter. Journal of Hazardous Materials, 184(1), 345–349.

    Article  Google Scholar 

  • Hernandez-Perez, G., Fayolle, F., & Vandecasteele, J.-P. (2001). Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae. Applied Microbiology and Biotechnology, 55(1), 117–121.

    Article  CAS  Google Scholar 

  • Hua, G., & Reckhow, D. A. (2007). Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Research, 41(8), 1667–1678.

    Article  CAS  Google Scholar 

  • Jang, S. R., & Jang, B. W. (2000). Thresholds for mathematical models of microbial interaction. In Computer-Based Medical Systems, 2000. CBMS 2000. Proceedings. 13th IEEE Symposium on, (pp. 51–56): IEEE.

  • Jolley, R. L., Condie, L. W., Johnson, J. D., Katz, S., Minear, R. A., Mattice, J. S., et al. (1990). Water chlorination: chemistry, environmental impact and health effects. In Conference on Water Chlorination: Environmental Impact and Health Effects, 6,: Lewis publishers

  • Kennes, C., & Veiga, M. C. (2004). Fungal biocatalysts in the biofiltration of VOC-polluted air. Journal of Biotechnology, 113(1), 305–319.

    Article  CAS  Google Scholar 

  • Khalil, M., & Rasmussen, R. (1999). Atmospheric chloroform. Atmospheric Environment, 33(7), 1151–1158.

    Article  CAS  Google Scholar 

  • Komulainen, H. (2004). Experimental cancer studies of chlorinated by-products. Toxicology, 198(1), 239–248.

    Article  CAS  Google Scholar 

  • Kumar, T. P., Rahul, M., & Chandrajit, B. (2011). Biofiltration of volatile organic compounds (VOCs)—an overview. Res J Chem Sci, 2231, 606X.

  • Leson, G., & Winer, A. M. (1991). Biofiltration: an innovative air pollution control technology for VOC emissions. Journal of the Air & Waste Management Association, 41(8), 1045–1054.

    Article  CAS  Google Scholar 

  • Moe, W. M., Hu, W., Key, T. A., & Bowman, K. S. (2013). Removal of the sesquiterpene β-caryophyllene from air via biofiltration: performance assessment and microbial community structure. Biodegradation, 24(5), 685–698.

    Article  CAS  Google Scholar 

  • Morris, R. D., Audet, A.-M., Angelillo, I. F., Chalmers, T. C., & Mosteller, F. (1992). Chlorination, chlorination by-products, and cancer: a meta-analysis. American Journal of Public Health, 82(7), 955–963.

    Article  CAS  Google Scholar 

  • Prado, Ó., Mendoza, J., Veiga, M., & Kennes, C. (2002). Optimization of nutrient supply in a downflow gas-phase biofilter packed with an inert carrier. Applied Microbiology and Biotechnology, 59(4–5), 567–573.

    CAS  Google Scholar 

  • Smith, F. L., Sorial, G. A., Suidan, M. T., Pandit, A., Biswas, P., & Brenner, R. C. (1998). Evaluation of trickle bed air biofilter performance as a function of inlet VOC concentration and loading, and biomass control. Journal of the Air & Waste Management Association, 48(7), 627–636.

    Article  CAS  Google Scholar 

  • Sorial, G. A., Smith, F. L., Suidan, M. T., Biswas, P., & Brenner, R. C. (1995). Evaluation of trickle bed biofilter media for toluene removal. Journal of the Air & Waste Management Association, 45(10), 801–810.

    Article  CAS  Google Scholar 

  • Thacker, N. P., Kaur, P., & Rudra, A. (2002). Trihalomethane formation potential and concentration changes during water treatment at Mumbai (India). Environmental Monitoring and Assessment, 73(3), 253–262.

    Article  CAS  Google Scholar 

  • USEPA (2016). Original list of hazardous air pollutants. https://www3.epa.gov/airtoxics/188polls.html. Accessed 17 August 2016.

  • USNIH (2016). Chloroform (Code C29815). https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&version=16.02d&ns=NCI_Thesaurus&code=C29815. Accessed 17 August 2016.

  • Vergara‐Fernández, A., Hernández, S., & Revah, S. (2008). Phenomenological model of fungal biofilters for the abatement of hydrophobic VOCs. Biotechnology and Bioengineering, 101(6), 1182–1192.

    Article  Google Scholar 

  • Wahman, D. G., Henry, A. E., Katz, L. E., & Speitel, G. E. (2006). Cometabolism of trihalomethanes by mixed culture nitrifiers. Water Research, 40(18), 3349–3358.

    Article  CAS  Google Scholar 

  • Westrick, J. J., Mello, J. W., & Thomas, R. F. (1984). The groundwater supply survey. Journal (American Water Works Association), 52–59.

  • Williams, D. T., LeBel, G. L., & Benoit, F. M. (1995). A national survey of chlorinated disinfection by-products in Canadian drinking water (E. H. D. Health Canada, Trans.). Ottawa, Ontario, Canada.

  • Zehraoui, A., Hassan, A. A., & Sorial, G. A. (2012). Effect of methanol on the biofiltration of n-hexane. Journal of Hazardous Materials, 219, 176–182.

    Article  Google Scholar 

  • Zehraoui, A., Hassan, A. A., & Sorial, G. A. (2013). Biological treatment of n-hexane and methanol in trickle bed air biofilters under acidic conditions. Biochemical Engineering Journal, 77, 129–135.

    Article  CAS  Google Scholar 

  • Zehraoui, A., Kapoor, V., Wendell, D., & Sorial, G. A. (2014). Impact of alternate use of methanol on n-hexane biofiltration and microbial community structure diversity. Biochemical Engineering Journal, 85, 110–118.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work conducted was partly supported by the grant obtained from the U.S. Environmental Protection Agency EPA 83454201–1 in collaboration with the University of Cincinnati Grants Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Sorial.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanisamy, K., Mezgebe, B., Sorial, G.A. et al. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions. Water Air Soil Pollut 227, 478 (2016). https://doi.org/10.1007/s11270-016-3194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3194-3

Keywords

Navigation