Log in

Impact of the Red Mud Disposal on Several Floodplain Lagoons of the Lower Orinoco River

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper identifies the effects of red mud spills on several lagoons of the Orinoco River located surrounding the red mud deposits. Chemical and mineralogical analyses of sediments indicate that the geochemical signature of red mud is evident in Los Caribes and Guadita lagoons, with elevated concentrations of Fe, Al, and Na and the presence of goethite and hematite as the major mineral phases. Water quality analyses indicate that these lagoons have elevated values of dissolved oxygen, pH, conductivity, and dissolved Ca, Na, Ni, and Al. Also, elevated concentrations of Ca, Mg, and Mn in sediments suggest the precipitation of calcite, brucite a Mn-oxyhydroxides due to high pH values. Although Los Cardonales lagoon also showed evidence of red mud deposition, the enrichment of Mn, Zn, Ni, and Cd in sediments from this lagoon could be associated with wastewaters coming from landfills. The absence of vascular plants and the low abundance of fish communities in several lagoons can be related with the high pH values and the elevated concentrations of dissolved Al. The high concentrations of Fe and Mn in sediments of these lagoons can have adverse effects on benthic organisms, according to International Guidelines. Even though this lagunar system is impacted by red mud spills, hyperalkaline conditions (pH > 13) were not found in superficial waters. Thus, dissolved trace element concentrations (Fe, Zn, Mn, Cr, Cu, Cd, and Pb) in waters were not high, mainly due to trace elements are immobilized by sorption or coprecipitation at circum-neutral pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brake, S., Dannelly, H., & Connors, K. (2001). Controls of the nature and distribution of an alga in coal mine-waste environments and its potential impact on water quality. Environmental Geology, 40, 458–469. doi:10.1007/s002540000181.

    Article  CAS  Google Scholar 

  • Brick, C. M., & Moore, J. N. (1996). Diel variation of trace metals in the upper Clark Fork River, Montana. Environmental Science & Technology, 30, 1953–1960. doi:10.1021/es9506465.

    Article  CAS  Google Scholar 

  • Burke, I. T., Mayes, W. M., Peacock, C. L., Brown, A. P., Jarvis, A. P., & Gruiz, K. (2012). Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka spill site, Hungary. Environmental Science & Technology, 46, 3085–3092. doi:10.1021/es3003475.

    Article  CAS  Google Scholar 

  • Chunhua, S., Yingqun, M., & Chuxia, L. (2013). Red mud as a carbon sink: variability, affecting factors and environmental significance. Journal of Hazardous Materials, 244–245, 54–59. doi:10.1016/j.jhazmat.2012.11.024.

    Google Scholar 

  • Czop, M., Motyka, J., Sracek, O., & Szuwarzński, M. (2011). Geochemistry of the hyperalkaline Gorka Pit Lake (pH > 13) in the Chrzanow region, southern Poland. Water, Air, and Soil Pollution, 214, 423–434. doi:10.1007/s11270-010-0433-x.

    Article  CAS  Google Scholar 

  • El-Gendy, A. S., Biswas, N., & Bewtra, J. K. (2004). Growth of water hyacinth in municipal landfill leachate with different pH. Environmental Technology, 25(7), 833–840. doi:10.1080/09593330.2004.9619375.

    Article  CAS  Google Scholar 

  • Fortin, C., & Campbell, P. G. C. (1999). Calculs de spéciation pour l’aluminium rejeté en eaux courantes. Rapport de Recherche N° R550, INRS-Eau, Environnement Canada. Québec, Canada. pp. 10.

  • Fuller, R. D., & Richardson, C. J. (1986). Aluminate toxicity as a factor controlling plant-growth in bauxite residue. Environmental Toxicology and Chemistry, 5(10), 905–915. doi:10.1002/etc.5620051007.

    Article  CAS  Google Scholar 

  • Gaillardet, J., Viers, J., & Dupré, B. (2003). Trace elements in river waters. In J. I. Drever, H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (pp. 225–272), vol. 5. Elsevier-Pergamon, doi:10.1016/B0-08-043751-6/05165-3.

  • Gelencsér, A., Kováts, N., Turóczi, B., Rostási, Á., Hoffer, A., Imre, K., Nyirő-Kósa, I., Csákberényi-Malasics, D., Tóth, A., Czitrovszky, A., Nagy, A., Nagy, S., Ács, A., Kovács, A., Ferincz, Á., Hartyáni, Z., & Pósfai, M. (2011). The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust. Environmental Science & Technology, 45, 1608–1615. doi:10.1021/es104005r.

    Article  Google Scholar 

  • Gensemer, R. W., & Playle, R. C. (1999). The bioavailability and toxicity of aluminum in aquatic environments. Critical Reviews in Environmental Science and Technology, 29(4), 315–450. doi:10.1080/10643389991259245.

    Article  CAS  Google Scholar 

  • González, N., Lasso, C., & Rosales, J. (2009). Stability and spatio-temporal structure in fish assemblages of two floodplain lagoons of the lower Orinoco River. Neotropical Ichthyology, 7(4), 719–736. doi:10.1590/S1679-62252009000400022.

    Article  Google Scholar 

  • Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., & McGrath, S. P. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution, 142, 530–539. doi:10.1016/j.envpol.2005.10.017.

    Article  CAS  Google Scholar 

  • Hamilton, S. K., & Lewis, W. M. (1987). Causes of seasonality in the chemistry of a lake on the Orinoco River floodplain, Venezuela. Limnology and Oceanography, 32(6), 1277–1290. doi:10.4319/lo.1987.32.6.1277.

    Article  CAS  Google Scholar 

  • Hamilton, S. K., & Lewis, W. M. (1990). Basin morphology in relation to chemical an ecological characteristics of lakes on the Orinoco River floodplain, Venezuela. Archiv für Hydrobiologie, 119(4), 393–425.

    CAS  Google Scholar 

  • Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126, 225–233. doi:10.1016/S0269-7491(03)00191-X.

    Article  CAS  Google Scholar 

  • Klauber, C., Gräfe, M., & Power, G. (2011). Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy, 108, 11–32. doi:10.1016/j.hydromet.2011.02.007.

    Article  CAS  Google Scholar 

  • Laraque, A., Moquet, J., Alkattan, R., Steiger, J., Mora, A., Adèle, G., Castellanos, B., Lagane, C., López, J. L., Pérez, J., Rodriguez, M., & Rosales, J. (2013). Seasonal variability of total dissolved fluxes and origin of major dissolved elements within a large tropical river: the Orinoco, Venezuela. Journal of South American Earth Sciences, 44, 4–17. doi:10.1016/j.jsames.2012.12.011.

    Article  CAS  Google Scholar 

  • Lewellen, S. (1990). Modeling of aqueous equilibria and sediment/water interactions, Orinoco River, Venezuela. In F. Weibezahn, H. Alvarez, & W. M. Lewis (Eds.), The Orinoco River as an ecosystem (pp. 121–150). Caracas: Impresos Rubel.

    Google Scholar 

  • Mac-Quhae, C. (2007). Nutrientes en lagunas de la cuenca baja del río Orinoco, sometidas a alteraciones antropogénicas. In A. Fernández, L. Fernández, & A. Vanina (Eds.), El agua en Iberoamerica. Efecto de los cambios globales sobre los recursos hídricos y ecosistemas marino-costeros (pp. 104–115). Buenos Aires: Red CYTED.

    Google Scholar 

  • Marmolejo-Rodríguez, A., Prego, R., Meyer-Willerer, A., Shumilin, E., & Cobelo-García, A. (2007). Total and labile metals in surface sediments of the tropical river-estuary system of Marabasco (Pacific coast of Mexico): influence of an iron mine. Marine Pollution Bulletin, 55, 459–468. doi:10.1016/j.marpolbul.2007.09.008.

    Article  Google Scholar 

  • Márquez, A., Senior, W., Martínez, G., Castañeda, J., & González, A. (2008). Metals concentration in sediments and muscular tissues of some fish from the Castillero lagoon, Venezuela. Revista Científica de la Facultad de Ciencias Veterinarias de La Universidad del Zulia, 18(2), 121–133.

    Google Scholar 

  • Mayes, W. M., Jarvis, A. P., Burke, I. T., Walton, M., Feigl, V., Klebercz, O., & Gruiz, K. (2011). Dispersal and attenuation of trace contaminants downstream of the Ajka Bauxite Residue (Red Mud) depository failure, Hungary. Environmental Science & Technology, 45, 5147–5155. doi:10.1021/es200850y.

    Article  CAS  Google Scholar 

  • Mora, A. (2011). Variación temporal y espacial de la concentración de cationes mayoritarios y elementos traza disueltos en el sistema río Orinoco, Venezuela. Doctoral Thesis, Universidad Politécnica de Madrid, Madrid, Spain, doi:10.13140/2.1.3394.2402.

  • Mora, A., Alfonso, J., Sánchez, L., Calzadilla, M., Silva, S., LaBrecque, J., & Azócar, J. (2009). Temporal variability of selected dissolved elements in the lower Orinoco River, Venezuela. Hydrological Processes, 23, 476–485. doi:10.1002/hyp.7159.

    Article  CAS  Google Scholar 

  • Mora, A., Baquero, J. C., Alfonso, J., Pisapia, D., & Balza, L. (2010). The Apure River: geochemistry of major and selected trace elements in an Orinoco river tributary coming from the Andes, Venezuela. Hydrological Processes, 24, 3798–3810. doi:10.1002/hyp.7801.

    Article  CAS  Google Scholar 

  • Nagy, A., Szabó, J., & Vass, I. (2013). Trace metal and metalloid levels in surface water of Marcal River before and after the Ajka red mud spill, Hungary. Environmental Science and Pollution Research, 20, 7603–7614. doi:10.1007/s11356-013-2071-5.

    Article  CAS  Google Scholar 

  • Narayan, A. (2007). Caracterización de metales en los sedimentos de fondo de las lagunas pertenecientes a la Planicie de Inundación del Bajo Orinoco. Comparación entre un sector industrial y un sector rural. MSc Thesis, UNEG, Ciudad Guayana, Venezuela.

  • Parent, L., Twiss, M. R., & Campbell, P. G. C. (1996). Influences of natural dissolved organic matter on the interaction of aluminum with the microalga Chlorella: a test of the free-ion model of trace metal toxicity. Environmental Science & Technology, 30, 1713–1720. doi:10.1021/es950718s.

    Article  CAS  Google Scholar 

  • Pérez-Villarrejo, L., Corpas-Iglesias, F. A., Martínez-Martínez, S., Artiaga, R., & Pascual-Cosp, J. (2012). Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry. Construction and Building Materials, 35, 656–665. doi:10.1016/j.conbuildmat.2012.04.133.

    Article  Google Scholar 

  • Persaud, D., Jaagumagi, R., & Hayton, A. (1993). Guidelines for the protection and management of aquatic sediment quality in Ontario (p. 23). Ottawa: Ontario Ministry of the Environment.

    Google Scholar 

  • Pontikes, Y., Nikolopoulos, P., & Angelopoulos, G. N. (2007). Thermal behaviour of clay mixtures with bauxite residue for the production of heavy-clay ceramics. Journal of the European Ceramic Society, 27, 1645–1649. doi:10.1016/j.jeurceramsoc.2006.05.067.

    Article  CAS  Google Scholar 

  • Power, G., Gräfe, M., & Klauber, C. (2011). Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy, 108, 33–45. doi:10.1016/j.hydromet.2011.02.006.

    Article  CAS  Google Scholar 

  • Roddaz, M., Viers, J., Moreira-Turcq, P., Blondel, C., Sondag, F., Guyot, J. L., & Moreira, L. (2014). Evidence for the control of the geochemistry of Amazonian floodplain sediments by stratification of suspended sediments in the Amazon. Chemical Geology, 387, 101–110. doi:10.1016/j.chemgeo.2014.07.022.

    Article  CAS  Google Scholar 

  • Ruyters, S., Mertens, J., Vassilieva, E., Dehandschutter, B., Poffijn, A., & Smolders, E. (2011). The red mud accident in Ajka (Hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil. Environmental Science & Technology, 45, 1616–1622. doi:10.1021/es104000m.

    Article  CAS  Google Scholar 

  • Santona, L., Castaldi, P., & Melis, P. (2006). Evaluation of the interaction mechanisms between red muds and heavy metals. Journal of Hazardous Materials B, 136, 324–329. doi:10.1016/j.jhazmat.2005.12.022.

    Article  CAS  Google Scholar 

  • Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462, 59–72. doi:10.1016/S0003-2670(02)00307-0.

    Article  CAS  Google Scholar 

  • Scott, D. T., McKnight, D. M., Voelker, B. M., & Hrncir, D. C. (2002). Redox processes controlling manganese fate and transport in a mountain stream. Environmental Science & Technology, 36, 453–459. doi:10.1021/es010951s.

    Article  CAS  Google Scholar 

  • Skoog, D., & West, D. (1989). Analytical Chemistry (p. 725). Mexico: McGraw-Hill.

    Google Scholar 

  • Somlai, J., Jobbágy, V., Kovács, J., Tarján, S., & Kovács, T. (2008). Radiological aspects of the usability of red mud as building material additive. Journal of Hazardous Materials, 150, 541–545. doi:10.1016/j.jhazmat.2007.05.004.

    Article  CAS  Google Scholar 

  • Sushil, S., & Batra, V. S. (2008). Catalytic applications of red mud, an aluminium industry waste: a review. Applied Catalysis B: Environmental, 81, 64–77. doi:10.1016/j.apcatb.2007.12.002.

    Article  CAS  Google Scholar 

  • Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R., & Webb, S. M. (2004). Biogenic Manganese oxides: properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32, 287–328. doi:10.1146/annurev.earth.32.101802.120213.

    Article  CAS  Google Scholar 

  • Vásquez, E., & Sánchez, L. (1984). Variación Estacional del Plancton en dos Sectores del Río Orinoco y una Laguna de Inundación Adyacente. Memoria de la Sociedad de Ciencias Naturales La Salle, 44(121), 11–31.

    Google Scholar 

  • Viers, J., Dupré, B., Braun, J., Deberdt, S., Angeletti, B., Ngoupayou, J. N., & Michard, A. (2000). Major and trace element abundances, and strontium isotopes in the Nyong basin rivers (Cameroon): constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments. Chemical Geology, 169, 211–241. doi:10.1016/S0009-2541(00)00298-9.

    Article  CAS  Google Scholar 

  • Wang, S., Ang, H. M., & Tadé, M. O. (2008). Novel applications of red mud as cuagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere, 72, 1621–1635. doi:10.1016/j.chemosphere.2008.05.013.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232. doi:10.1016/0016-7037(95)00038-2.

    Article  CAS  Google Scholar 

  • Wilkie, M. P., & Wood, C. M. (1996). The adaptations of fish to extremely alkaline environments. Comparative Biochemistry and Physiology - Part B, 113, 665–673. doi:10.1016/0305-0491(95)02092-6.

    Article  Google Scholar 

  • Yadav, V. S., Prasad, M., Khan, J., Amritphale, S. S., Singh, M., & Raju, C. B. (2010). Sequestration of carbon dioxide (CO2) using red mud. Journal of Hazardous Materials, 176, 1044–1050. doi:10.1016/j.jhazmat.2009.11.146.

    Article  CAS  Google Scholar 

  • Zhou, W., Zhu, D., Tan, L., Liao, S., Hu, Z., & Hamilton, D. (2007). Extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes). Bioresource Technology, 98, 226–231. doi:10.1016/j.biortech.2005.11.011.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank César Mac-Quhae and Jorge Medina for their help during sampling campaigns. Constructive reviews of two anonymous reviewers are greatly appreciated. This work was totally supported by Fundación La Salle de Ciencias Naturales and Instituto Venezolano de Investigaciones Científicas (IVIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abrahan Mora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, A., Pisapia, D., González, N. et al. Impact of the Red Mud Disposal on Several Floodplain Lagoons of the Lower Orinoco River. Water Air Soil Pollut 226, 179 (2015). https://doi.org/10.1007/s11270-015-2447-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2447-x

Keywords

Navigation