Log in

What we don’t seed: the role of long-lived seed banks as hidden legacies of invasive plants

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Acacia dealbata is an invasive south-eastern Australian tree that produces a persistent soil seed bank. In order to characterize the seed bank in plots invaded by A. dealbata and to understand its implications for management and re-invasion risk, density, germinability, and viability of the seed bank were evaluated in five sites in central Portugal. Soil samples were collected in A. dealbata invaded plots and adjacent areas and screened for seeds, which were then quantified and germinated at 25 °C. A subset of seeds was first exposed to 60 °C to assess the effect of high soil temperature on dormancy breaking. Variables influencing differences between sites were explored with generalized linear mixed models with a Poisson distribution. Inside A. dealbata invaded plots the seed bank averaged 4608 seeds/m2, reaching up to 62,747 seeds/m2; in adjacent areas, up to 14 m from the plots, only 9 seeds/m2 were found. Seed bank densities were mostly influenced by stoniness, number of fires in the last 10 years, and density of trees and roots. Almost 90% of seeds were viable, but only 8.6% germinated without treatment. Nearly 70% of seeds exposed to 60 °C germinated without any physical stimulation, suggesting that high soil temperatures can effectively break seed dormancy. The high density and viability of A. dealbata’s seed bank and its ability to disperse seeds far from the parent plants contribute to the species’ invasive success. These features combined with heat events that can overcome seed dormancy need to be considered in the management of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adair RJ (2008a) Galling guilds associated with Acacia dealbata and factors guiding selection of potential biological control agents. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher P E, Hinz HL, Rector BG (eds) Proceedings of the XII International Symposium on Biological Control of Weeds. La Grande Motte, France, pp 122–128, 22–27 Apr 2007

  • Adair RJ (2008b) Biological control of Australian native plants, in Australia, with an emphasis on acacias. Muelleria 26(1):67–78

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19(6):716–723

    Article  Google Scholar 

  • Andreu J, Vilà M (2007) Análisis de la gestión de las plantas exóticas en los espacios naturales españoles. Ecosistemas 16(3):109–124

    Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS (2008) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evolut 24(3):127–135

    Article  Google Scholar 

  • Bradstock RA, Auld TD (1995) Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. J Appl Ecol 32:76–84

    Article  Google Scholar 

  • Correia M, Castro S, Ferrero V, Crisóstomo JA, Rodríguez-Echeverría S (2014) Reproductive biology and success of invasive Australian acacias in Portugal. Bot J Linnean Soc 174:574–588

    Article  Google Scholar 

  • Crisóstomo JA, Freitas H, Rodríguez-Echeverría S (2007) Relative growth rates of three woody legumes: implications in the process of ecological invasion. Web Ecol 7:22–26

    Article  Google Scholar 

  • D’Antonio C, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10(4):703–713

    Article  Google Scholar 

  • DAISIE European Invasive Alien Species Gateway (2006) Acacia dealbata. http://www.europe-aliens.org/speciesFactsheet.do?speciesId=12749 Accessed 11 Jan 2014

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Fernandes MM (2008) Recuperação Ecológica de Áreas Invadidas por Acacia dealbata Link no Vale do Rio Gerês: Um Trabalho de Sísifo? Master Dissertation, University of Trás-os-Montes e Alto Douro, Portugal

  • Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder M, Nielsen A, Sibert J (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249

    Article  Google Scholar 

  • Fuentes-Ramirez A, Pauchard A, Lohengrin AC, García RA (2011) Survival and growth of Acacia dealbata vs native trees across an invasion front in south-central Chile. For Ecol Manag 261:1003–1009

    Article  Google Scholar 

  • Gibson MR, Richardson DM, Marchante E, Marchante H, Rodger JG, Stone GN, Byrne M, Fuentez-Ramírez A, George N, Harris C, Johnson SD, Le Roux JL, Miller JT, Murphy DJ, Pauw A, Prescott MN, Wandrag EM, Wilson JRU (2011) Reproductive biology of Australian acacias: important mediator of invasiveness? Divers Distrib 17:911–933

    Article  Google Scholar 

  • Gioria M, Pyšek P, Moravcová L (2012) Soil seed banks in plant invasions: promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84:327–350

    Google Scholar 

  • Horta MC (2014) Dados climáticos referentes a 2013—Posto meteorológico da Escola Superior Agrária. Instituto Superior de Castelo Branco, Portugal

    Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. John Wiley & Sons Inc, Hoboken, p 375

    Book  Google Scholar 

  • ICN (2006). Plano Sectorial da Rede Natura 2000. Flora. Instituto da Conservação da Natureza, Direcção de Serviços da Conservação da Natureza, Lisboa

  • Le Maitre DC, Gaertner M, Marchante E, Ens EJ, Holmes PM, Pauchard A, O’Farrell PJ, Rogers AM, Blanchard R, Blignaut J, Richardson DM (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17:1015–1029

    Article  Google Scholar 

  • Lorenzo P, Gonzáles L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67:101

    Article  Google Scholar 

  • Lorenzo P, Pazos-Malvido E, Rubido-Bará M, Reigosa MJ, González L (2012) Invasion by the leguminous tree Acacia dealbata (Mimosaceae) reduces the native understory plant species in different communities. Aust J Bot 60:669–675

    Article  Google Scholar 

  • Marais C, van Wilgen BW, Stevens D (2004) The clearing of invasive alien plants in South Africa: a preliminary assessment of costs and progress. S Afr J Sci 100:97–103

    Google Scholar 

  • Marchante H, Freitas H, Hoffmann JH (2011a) Post-clearing recovery of coastal dunes invaded by Acacia longifolia: is duration of invasion relevant for management success? J Appl Ecol 48(5):1295–1304

    Article  Google Scholar 

  • Marchante H, Freitas H, Hoffmann JH (2011b) Assessing the suitability and safety of a well-known bud-galling wasp, Trichilogaster acaciaelongifoliae, for biological control of Acacia longifolia in Portugal. Biol Control 56:193–201

    Article  Google Scholar 

  • Marchante H, Morais M, Freitas H, Marchante E (2014) Guia prático para a identificação de Plantas Invasoras em Portugal. Imprensa da Universidade de Coimbra, Coimbra, p 207

    Book  Google Scholar 

  • Marchante H, López-Núñez FA, Freitas H, Hoffmann JH, Impson F, Marchante E (2017) First report of the establishment of the biocontrol agent Trichilogaster acaciaelongifoliae for control of invasive Acacia longifolia in Portugal. EPPO Bull. doi:10.1111/epp.12373

    Google Scholar 

  • Maslin BR, McDonald MW (2004) AcaciaSearch: evaluation of Acacia as a woody crop option for Southern Australia. Rural Industries Research and Development Corporation, Barton, ACT (RIRDC publication no. 03/017). ISBN 0642585857

  • McConnachie MM, Cowling RM, van Wilgen BW, McConnachie DA (2012) Evaluating the cost-effectiveness of invasive alien plant clearing: a case study from South Africa. Biol Conserv 155:128–135

    Article  Google Scholar 

  • Meireles C, Mendes P, Vila-Viçosa C, Cano-Carmona E, Pinto-Gomes C (2013) Geobotanical aspects of Cytisus oromediterraneus and Genista cinerascens in Serra da Estrela (Portugal). Plant Sociol 50(1):23–31

    Google Scholar 

  • Ooi MKJ, Auld TD, Denham AJ (2012) Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Plant Soil 353:289–303

    Article  CAS  Google Scholar 

  • Ooi MKJ, Denham JA, Santana VM, Auld TD (2014) Temperature thresholds of physically dormant seeds and plant functional response to fire: variation among species and relative impact of climate change. Ecol Evol 4(5):656–671

    Article  PubMed  PubMed Central  Google Scholar 

  • Probert RJ (2000) The role of temperature in the regulation of seed dormancy and germination. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn. CABI Publishing, New York, pp 261–271

    Chapter  Google Scholar 

  • Richardson DM, Kluge R (2008) Seed banks of invasive Australian Acacia species in South Africa: role in invasiveness and options for management. Perspect Plant Ecol Evol Syst 10:161–177

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Richardson DM, Pyšek P, Simberloff D, Rejmánek M, Mader AD (2008) Biological invasions—the widening debate: a response to Charles Warren. Prog Hum Geogr 32:295–298

    Article  Google Scholar 

  • Rodríguez-Echeverría S, Afonso C, Correia M, Lorenzo P, Roiloa SR (2013) The effect of soil legacy on competition and invasion by Acacia dealbata Link. Plant Ecol 214(9):1139–1146

    Article  Google Scholar 

  • Saharjo BH, Watanabe H (1997) The effects of fire on the germination of Acacia mangium in a plantation in South Sumatra, Indonesia. Commonw For Rev 76:128–131

    Google Scholar 

  • Santana VM, Bradstock RA, Ooi MKJ, Denham AJ, Auld TD, Baeza MJ (2010) Effects of soil temperature regimes after fire on seed dormancy and germination in six Australian Fabaceae species. Aust J Bot 58:539–545

    Article  Google Scholar 

  • Santana VM, Baeza MJ, Blanes MC (2013) Clarifying the role of fire heat and daily temperature fluctuations as germination cues for Mediterranean Basin obligate seeders. Ann Bot 111:127–134

    Article  PubMed  Google Scholar 

  • Sanz-Elorza M, Dana E, Sobrino E (eds) (2004) Atlas de las plantas alóctonas invasoras en España. Dirección General para la Biodiversidad, Madrid, p 384

    Google Scholar 

  • Spearman C (1907) Demonstration of formulæ for true measurement of correlation. Am J Psychol 18(2):161–169

    Article  Google Scholar 

  • Stoof CR, Moore D, Fernandes PM, Stoorvogel JJ, Fernandes RES, Ferreira AJD, Ritsema CJ (2013) Hot fire, cool soil. Geophys Res Lett 40:1534–1539

    Article  Google Scholar 

  • Vilà M, Espinar J, Hejda M, Hulme P, Jarošík V, Maron J, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Wijayabandara SMKH, Jayasuriya KMGG, Jayasinghe JLDHC (2013) Seed dormancy, storage behavior and germination of an exotic invasive species, Lantana camara L. (Verbenaceae). Int Res J Biol Sci 2(1):7–14

    Google Scholar 

  • Wilson JRU, Gairifo C, Gibson MR, Arianoutsou M, Bakar BB, Baret S, Celesti-Grapow DiTomaso JM, Dufour-Dror JM, Kueffer C, Kull CA, Hoffmann JH, Impson FAC, Loope LL, Marchante E, Marchante H, Moore JL, Murphy DJ, Tassin J, Witt A, Zenni R, Richardson DM (2011) Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions. Divers Distrib 17:1030–1046

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank João Paula and José Paula for help in fieldwork and Maria João Janeiro for assistance with statistical analysis. Silvia Castro is acknowledged for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabete Marchante.

Additional information

Communicated by Thomas Abeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passos, I., Marchante, H., Pinho, R. et al. What we don’t seed: the role of long-lived seed banks as hidden legacies of invasive plants. Plant Ecol 218, 1313–1324 (2017). https://doi.org/10.1007/s11258-017-0770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0770-6

Keywords

Navigation