Log in

GDF11, a target of miR-32-5p, suppresses high-glucose-induced mitochondrial dysfunction and apoptosis in HK-2 cells through PI3K/AKT signaling activation

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the role and underlying mechanism of GDF11 on diabetic nephropathy (DN)-related mitochondrial dysfunction and apoptosis.

Methods

A DN model of rats was established in this study. Human Kidney-2 (HK-2) cells were cultured under high-glucose (HG) condition with or without recombinant GDF11 (rGDF11). Mitochondrial morphology of HK-2 cells was analyzed by transmission electron microscope and MitoTracker Red CMXRos staining. Mitochondrial membrane potential (MMP) and ROS production were monitored using JC-1 assay kit and MitoSOX staining, respectively. Cell apoptosis was detected by TUNEL or flow cytometry assays.

Results

Herein, we observed that GDF11 was down-regulated in renal cortex and serum of DN rats, which was accompanied by renal mitochondrial morphological abnormalities. In line with the findings in vivo, HK-2 cells exposed to HG presented with mitochondrial morphological alterations and further apoptosis accompanied by GDF11 reduction. In addition, HG promoted a decrease in MMP while an increase in mitochondrial ROS production. Conversely, rGDF11 treatment significantly alleviated these HG-induced mitochondrial defects in HK-2 cells. Meanwhile, HK-2 cell apoptosis induced by HG was simultaneously suppressed by rGDF11. Mechanistically, the decreased levels of p-AKT induced by HG were attenuated after rGDF11 administration. Inhibition of the PI3K/AKT pathway resisted the effects of rGDF11 on the MMP and apoptosis of HK-2 cells. In addition, we identified that GDF11 is a target of miR-32-5p. Up-regulation of miR-32-5p could inhibit the expression of GDF11.

Conclusion

rGDF11 treatment rescued HG-induced HK-2 cell mitochondrial dysfunction and apoptosis, which may be dependent on the activation of the PI3K/AKT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or used during the study appear in the submitted article.

References

  1. Anders HJ, Huber TB, Isermann B, Schiffer M (2018) CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol 14:361–377. https://doi.org/10.1038/s41581-018-0001-y

    Article  CAS  PubMed  Google Scholar 

  2. Barkoudah E, Skali H, Uno H, Solomon SD, Pfeffer MA (2012) Mortality rates in trials of subjects with type 2 diabetes. J Am Heart Assoc 1:8–15. https://doi.org/10.1161/jaha.111.000059

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123. https://doi.org/10.1016/j.cell.2008.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Soltoff SP (1986) ATP and the regulation of renal cell function. Annu Rev Physiol 48:9–31. https://doi.org/10.1146/annurev.ph.48.030186.000301

    Article  CAS  PubMed  Google Scholar 

  5. Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol 14:291–312. https://doi.org/10.1038/nrneph.2018.9

    Article  CAS  PubMed  Google Scholar 

  6. Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. Nat Rev Nephrol 13:629–646. https://doi.org/10.1038/nrneph.2017.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakashima M, Toyono T, Akamine A, Joyner A (1999) Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. Mech Dev 80:185–189. https://doi.org/10.1016/s0925-4773(98)00205-6

    Article  CAS  PubMed  Google Scholar 

  8. Simoni-Nieves A, Gerardo-Ramírez M, Pedraza-Vázquez G et al (2019) GDF11 Implications in Cancer Biology and Metabolism. Fact Contro Frontier oncol 9:1039. https://doi.org/10.3389/fonc.2019.01039

    Article  Google Scholar 

  9. Rochette L, Malka G (2019) Neuroprotective potential of GDF11: myth or reality? Inter j mol sci. https://doi.org/10.3390/ijms20143563

    Article  Google Scholar 

  10. Jamaiyar A, Wan W, Janota DM, Enrick MK, Chilian WM, Yin L (2017) The versatility and paradox of GDF 11. Pharmacol Ther 175:28–34. https://doi.org/10.1016/j.pharmthera.2017.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Li Q, Liu D et al (2016) GDF11 improves tubular regeneration after acute kidney injury in elderly mice. Sci Rep 6:34624. https://doi.org/10.1038/srep34624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pons M, Koniaris LG, Moe SM, Gutierrez JC, Esquela-Kerscher A, Zimmers TA (2018) GDF11 induces kidney fibrosis, renal cell epithelial-to-mesenchymal transition, and kidney dysfunction and failure. Surgery 164:262–273. https://doi.org/10.1016/j.surg.2018.03.008

    Article  PubMed  Google Scholar 

  13. Zhang J, Li Y, Li H et al (2018) gdf11 improves angiogenic function of EPCs in diabetic limb ischemia. Diabetes 67:2084–2095. https://doi.org/10.2337/db17-1583

    Article  CAS  PubMed  Google Scholar 

  14. Lu B, Zhong J, Pan J et al (2019) Gdf11 gene transfer prevents high fat diet-induced obesity and improves metabolic homeostasis in obese and STZ-induced diabetic mice. J Transl Med 17:422. https://doi.org/10.1186/s12967-019-02166-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walker RG, Barrandon O, Poggioli T et al (2020) Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice. Sci Rep 10:4561. https://doi.org/10.1038/s41598-020-61443-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Katsimpardi L, Kuperwasser N, Camus C et al (2020) Systemic GDF11 stimulates the secretion of adiponectin and induces a calorie restriction-like phenotype in aged mice. Aging Cell 19:e13038

    Article  CAS  PubMed  Google Scholar 

  17. Wang HJ, Liu H, Lin YH, Zhang SJ (2021) MiR-32-5p knockdown inhibits epithelial to mesenchymal transition and renal fibrosis by targeting SMAD7 in diabetic nephropathy. Hum Exp Toxicol 40:587–595. https://doi.org/10.1177/0960327120952157

    Article  CAS  PubMed  Google Scholar 

  18. Li XY, Wang SS, Han Z et al (2017) Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway. Mol therapy Nuc acid 9:48–56. https://doi.org/10.1016/j.omtn.2017.08.011

    Article  CAS  Google Scholar 

  19. Jiang XS, **ang XY, Chen XM et al (2020) Inhibition of soluble epoxide hydrolase attenuates renal tubular mitochondrial dysfunction and ER stress by restoring autophagic flux in diabetic nephropathy. Cell Death Dis 11:385. https://doi.org/10.1038/s41419-020-2594-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uhlén M, Fagerberg L, Hallström BM et al (2015) Proteomics tissue-based map of the human proteome. Science 347:1260419

    Article  PubMed  Google Scholar 

  21. Thoudam T, Jeon JH, Ha CM, Lee IK (2016) Role of Mitochondria-associated endoplasmic reticulum membrane in inflammation-mediated metabolic diseases. Mediators Inflamm 2016:1851420. https://doi.org/10.1155/2016/1851420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Higgins GC, Coughlan MT (2014) Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 171:1917–1942. https://doi.org/10.1111/bph.12503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abe Y, Sakairi T, Kajiyama H, Shrivastav S, Beeson C, Kopp JB (2010) Bioenergetic characterization of mouse podocytes. Am J Physiol Cell Physiol 299:C464-476. https://doi.org/10.1152/ajpcell.00563.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan Y, Huang S, Wang W et al (2012) Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int 82:771–789. https://doi.org/10.1038/ki.2012.188

    Article  CAS  PubMed  Google Scholar 

  25. Fan Y, Yang Q, Yang Y et al (2019) Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. Int J Biol Sci 15:701–713. https://doi.org/10.7150/ijbs.29323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garrido-Moreno V, Díaz-Vegas A, López-Crisosto C et al (2019) GDF-11 prevents cardiomyocyte hypertrophy by maintaining the sarcoplasmic reticulum-mitochondria communication. Pharmacol res 146:104273

    Article  CAS  PubMed  Google Scholar 

  27. Anqi X, Ruiqi C, Yanming R, Chao Y (2019) Neuroprotective potential of GDF11 in experimental intracerebral hemorrhage in elderly rats. J clinical neurosci 63:182–188. https://doi.org/10.1016/j.jocn.2019.02.016

    Article  CAS  Google Scholar 

  28. Coughlan MT, Higgins GC, Nguyen TV et al (2016) Deficiency in apoptosis-inducing factor recapitulates chronic kidney disease via aberrant mitochondrial homeostasis. Diabetes 65:1085–1098. https://doi.org/10.2337/db15-0864

    Article  CAS  PubMed  Google Scholar 

  29. Coughlan MT, Nguyen TV, Penfold SA et al (2016) Map** time-course mitochondrial adaptations in the kidney in experimental diabetes. Clin sci 130:711–720

    Article  CAS  Google Scholar 

  30. Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506. https://doi.org/10.1016/j.cmet.2013.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. **ao A, Zhang Y, Ren Y et al (2021) GDF11 alleviates secondary brain injury after intracerebral hemorrhage via attenuating mitochondrial dynamic abnormality and dysfunction. Sci Rep 11:3974. https://doi.org/10.1038/s41598-021-83545-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H, Li Y, **ang L et al (2017) GDF11 attenuates development of type 2 diabetes via improvement of Islet β-Cell function and survival. Diabetes 66:1914–1927. https://doi.org/10.2337/db17-0086

    Article  CAS  PubMed  Google Scholar 

  33. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204. https://doi.org/10.1016/j.ctrv.2003.07.007

    Article  CAS  PubMed  Google Scholar 

  34. Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H (2019) PI3k/AKT signaling pathway: erythropoiesis and beyond. J Cell Physiol 234:2373–2385. https://doi.org/10.1002/jcp.27262

    Article  CAS  PubMed  Google Scholar 

  35. Pfeffer CM, Singh ATK (2018) Apoptosis: a target for anticancer therapy. Inter j mol sci. https://doi.org/10.3390/ijms19020448

    Article  Google Scholar 

  36. Gao X, Li X, Ho CT et al (2020) Cocoa tea (Camellia ptilophylla) induces mitochondria-dependent apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling pathway. Food res inter. 129:108854

    Article  CAS  Google Scholar 

  37. Wang L, Ma G, Zhang Y et al (2018) Effect of mitochondrial cytochrome c release and its redox state on the mitochondrial-dependent apoptotic cascade reaction and tenderization of yak meat during postmortem aging. Food res inter 111:488–497. https://doi.org/10.1016/j.foodres.2018.05.049

    Article  CAS  Google Scholar 

  38. Wang W, Hao Y, Li F (2019) Notoginsenoside R1 alleviates high glucose-evoked damage in RSC96 cells through down-regulation of miR-503. Art cells 47:3947–3954. https://doi.org/10.1080/21691401.2019.1671434

    Article  CAS  Google Scholar 

  39. Huang D, Peng Y, Ma K et al (2020) Puerarin relieved compression-induced apoptosis and mitochondrial dysfunction in human nucleus pulposus mesenchymal stem cells via the PI3K/Akt pathway. Stem cells inter 2020:7126914. https://doi.org/10.1155/2020/7126914

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Heilongjiang Province (Grant No. LH2020H064)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Wang.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical approval

This study was approved by the Experimental Animal Ethics Committee of The Fourth Affiliated Hospital of Harbin Medical University. We have read the journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11255_2023_3495_MOESM1_ESM.tif

Supplementary file1 Fig. S1 (A) Quantification of MitoTracker Red CMXRos staining in Fig. 2F: the ratio of HK-2 cells with fragmented mitochondria. (B-C) Quantification of JC-1 (shown in Fig. 2G) and Mito SOX staining (shown in Fig. 2H), respectively (TIF 387 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, Y., Liu, H. et al. GDF11, a target of miR-32-5p, suppresses high-glucose-induced mitochondrial dysfunction and apoptosis in HK-2 cells through PI3K/AKT signaling activation. Int Urol Nephrol 55, 1767–1778 (2023). https://doi.org/10.1007/s11255-023-03495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03495-3

Keywords

Navigation