Log in

Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez-Buylla ER, Liljegren SJ, Soraya Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  CAS  PubMed  Google Scholar 

  • Barton KA, Binns AN, Matzke AJM, Chilton MD (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043. doi:10.1016/0092-8674(83)90288-X

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Winter KU, Meyer B, Saedler H, Theissen G (2000) MADS-Box gene diversity in seed plants 300 million years ago. Mol Biol Evol 17:1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  PubMed  Google Scholar 

  • Caplan A, Herrera-Estrella L, Inze D, Van Haute E, Van Montagu M, Schell J, Zambryski P (1983) Introduction of genetic material into plant cells. Science 222:815–821. doi:10.1126/science.222.4625.815

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Que Q (2003) Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133:956–965. doi:10.1104/pp.103.026104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  PubMed  Google Scholar 

  • DeFramond AJ, Meghji MR, New SL, Prairie AU (2013) Corn event 5307. US Patent Number 8,466,346

  • Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM (1982) Nopaline synthase: transcript map** and DNA sequence. J Mol Appl Genet 1:561–573

    CAS  PubMed  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders P, Flick J, Adams S, Bittner M, Brand L, Fink C, Fry J, Galluppi G, Goldberg S, Hoffmann N, Woo S (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676. doi:10.1104/pp.109.139873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanson B, Engler D, Moy Y, Newman B, Ralston E, Gutterson N (1999) A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. Plant J 19:727–734

    Article  CAS  PubMed  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31(132–134):136–140

    Google Scholar 

  • Ishida Y (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  • Jeon JS et al (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871–884

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones JG, Gilbert D, Grady K, Jorgensen R (1987) T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet MGG 207:478–485. doi:10.1007/bf00331618

    Article  CAS  Google Scholar 

  • Kim J, Gallo M, Altpeter F (2012) Analysis of transgene integration and expression following biolistic transfer of different quantities of minimal expression cassette into sugarcane (Saccharum spp. hybrids). Plant Cell Tissue Organ Cult 108:297–302. doi:10.1007/s11240-011-0043-3

    Article  CAS  Google Scholar 

  • Komari T (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9:303–306. doi:10.1007/BF00232856

    Article  CAS  PubMed  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  CAS  PubMed  Google Scholar 

  • Lebrun M, Sailland A, Freyssinet G, Degryse E (2003) Mutated 5-enolpyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene. US Patent Number 6,566,587

  • Li X, Elumalai S (2014) Methods for generating transgenic plants. US Patent Publication Number 20140366223

  • Li X, Volrath SL, Nicholl DBG, Chilcott CE, Johnson MA, Ward ER, Law MD (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133:736–747. doi:10.1104/pp.103.026245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowe BA, Shiva Prakash N, Way M, Mann MT, Spencer TM, Boddupalli RS (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res 18:831–840. doi:10.1007/s11248-009-9265-0

    Article  CAS  PubMed  Google Scholar 

  • Mena M, Mandel MA, Lerner DR, Yanofsky MF, Schmidt RJ (1995) A characterization of the MADS-box gene family in maize. Plant J 8:845–854. doi:10.1046/j.1365-313X.1995.8060845.x

    Article  CAS  PubMed  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Annu Rev Plant Physiol Plant Mol Biol 47:23–48. doi:10.1146/annurev.arplant.47.1.23

    Article  CAS  PubMed  Google Scholar 

  • Miles JS, Guest JR (1984) Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene 32:41–48

    Article  CAS  PubMed  Google Scholar 

  • Murai N, Kemp JD, Sutton DW, Murray MG, Slightom JL, Merlo DJ, Reichert NA, Sengupta-Gopalan C, Stock CA, Barker RF, Hall TC (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222:476–482. doi:10.1126/science.222.4623.476

    Article  CAS  PubMed  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195. doi:10.1038/35056041

    Article  CAS  PubMed  Google Scholar 

  • Nuccio ML, Lagrimini M, Meghji M (2011) MADS gene regulatory sequences for expressing gene products in plant reproductive tissue. USA Patent Number 8,679,844

  • Oltmanns H, Frame B, Lee LY, Johnson S, Li B, Wang K, Gelvin SB (2010) Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol 152:1158–1166. doi:10.1104/pp.109.148585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pramanik MH, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101

    CAS  PubMed  Google Scholar 

  • Smyth DR (1997) Gene silencing: cosuppression at a distance. Curr Biol 7:R793–R796. doi:10.1016/S0960-9822(06)00407-6

    Article  CAS  PubMed  Google Scholar 

  • Spencer M, Mumm R, Gwyn J (2000) Glyphosate resistant maize lines. USA Patent 6,040,497, 2000

  • Stavolone L, Kononova M, Pauli S, Ragozzino A, de Haan P, Milligan S, Lawton K, Hohn T (2003) Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol Biol 53:663–673. doi:10.1023/B:PLAN.0000019110.95420.bb

    Article  CAS  PubMed  Google Scholar 

  • Tijssen P (1985) Practice and theory of enzyme immunoassays. Elsevier Science, USA

    Google Scholar 

  • Wang X, Wang P, Sun S, Darwiche S, Idnurm A, Heitman J (2012) Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans. PLoS Genet 8:e1002885. doi:10.1371/journal.pgen.1002885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wenck A, Pugieux C, Turner M, Dunn M, Stacy C, Tiozzo A, Dunder E, van Grinsven E, Khan R, Sigareva M, Wang WC, Reed J, Drayton P, Oliver D, Trafford H, Legris G, Rushton H, Tayab S, Launis K, Chang Y-F, Chen D-F, Melchers L (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251. doi:10.1007/s00299-003-0690-x

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Williams EJ, Shen J, Esser JA, Nichols AM, Petersen MW, Gilbertson LA (2008) Plant development inhibitory genes in binary vector backbone improve quality event efficiency in soybean transformation. Transgenic Res 17:827–838. doi:10.1007/s11248-008-9169-4

    Article  CAS  PubMed  Google Scholar 

  • Ye X et al (2011) Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens. Transgenic Res 20:773–786. doi:10.1007/s11248-010-9458-6

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2012) Characterization and expression analysis of six MADS-box genes in maize (Zea mays L.). J Plant Physiol 169:797–806

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Vance Kramer, Jeremy Gould, Michael Schweiner, Eddie Lauer, Wenling Wang, Ryan Carlin and John Clark Jr. for their help in this project. We also thank other Syngenta colleagues for their enthusiasm and support of this work. The authors also would like to thank Drs. Liang Shi and Bruce Vrana for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elumalai Sivamani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Nucleotide sequence alignment of MADS-domain transcription factor region in OsMADS1 (constructs 20070, 21099 and 22230), OsMADS2 (construct 22096) and OsMADS16 (construct 22072) compared with maize ZmMADS9 (GenBank accession NM_001177865) and ZmMADS10 (GenBank accession EF552705) (TIFF 123 kb)

Supplementary material 2 (DOCX 20 kb)

Supplementary material 3 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivamani, E., Li, X., Nalapalli, S. et al. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize. Transgenic Res 24, 1017–1027 (2015). https://doi.org/10.1007/s11248-015-9902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-015-9902-8

Keywords

Navigation