Log in

Improving Coking Resistance and Catalytic Performance of Ni Catalyst from LaNiO3 Perovskite by Dispersion on SBA-15 Mesoporous Silica for Hydrogen Production by Steam Reforming of Ethanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A strategic option for the production of H2 from renewable resources is use of the ethanol steam reforming reaction. Catalysts based on nickel have been widely investigated for this reaction, offering the advantages of low cost and high activity. However, a difficulty is that nickel may be strongly deactivated by coke formation. Perovskite-type mixed oxides are promising precursors for nickel-based catalysts, since their reduction leads to the formation of highly dispersed metal particles that can mitigate carbon deposition. However, high calcination temperatures are required for perovskite structure formation, resulting in low surface areas and limiting the effectiveness of this method. In order to address this difficulty, the present work proposes a novel strategy whereby the perovskite-type oxide LaNiO3 is supported on SBA-15. Characterization of the catalysts was performed using XRF, XRD, SEM, TPR, TEM, BET, H2-TPD, and TGA techniques. Their performances were then evaluated in catalysis of the ethanol steam reforming reaction to produce hydrogen. Calcination at 750 °C resulted in formation of highly dispersed perovskite on a support that presented high specific surface area. The catalyst obtained from reduced LaNiO3/SBA-15 with 33 wt% perovskite was the most active in the reaction. Analyses using TGA and SEM showed the formation of carbon mainly over Ni catalysts obtained from bulk LaNiO3 perovskite, while supporting LaNiO3 on SBA-15 led to lower deposition of carbon. The superior performance of this material in catalysis could be attributed to the dispersion of the perovskite on SBA-15, resulting in smaller size of the Ni metal particles formed during the reduction, compared to the catalyst derived from bulk perovskite. This promising method could be used in the production of a wide range of other catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. CGEE (2010) Hidrogênio energético no Brasil: subsídios para políticas de competitividade, 2010–2025; Tecnologias críticas e sensíveis em setores prioritários. pp 1–68.

  2. Energy Statistics (2019) https://www.iea.org/reports/world-energy-statistics-2019. accessed 21 Sept 2020.

  3. Dutta S (2014) A review on production, storage of hydrogen and its utilization as an energy resource. J Ind Eng Chem 20:1148–1156

    Article  CAS  Google Scholar 

  4. da Silva Veras T, Mozer TS, da Silva César A (2017) Hydrogen: trends, production and characterization of the main process worldwide. Int J Hydrogen Energy 42:2018–2033

    Article  CAS  Google Scholar 

  5. Demirbas A (2017) Future hydrogen economy and policy. Energy Sources B Econ Plan Policy 12:172–181

    Article  CAS  Google Scholar 

  6. Moravvej Z, Soroush E, Makarem MA, Rahimpour MR (2021) 7. Thermochemical routes for hydrogen production from biomass. Elsevier, Amsterdam, pp 193–208

    Google Scholar 

  7. Ochoa A, Bilbao J, Gayubo AG, Castaño P (2020) Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: a review. Renew Sustain Energy Rev 119:109600

    Article  CAS  Google Scholar 

  8. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112:4094–4123

    Article  CAS  PubMed  Google Scholar 

  9. Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4:1078–1090

    Article  CAS  Google Scholar 

  10. Zanchet D, Santos JBO, Damyanova S, Gallo JMR, Bueno JMC (2015) Toward understanding metal-catalyzed ethanol reforming. ACS Catal 5:3841–3863

    Article  CAS  Google Scholar 

  11. Li S, Gong J (2014) Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem Soc Rev 43:7245–7256

    Article  CAS  PubMed  Google Scholar 

  12. Auprêtre F, Descorme C, Duprez D (2002) Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal Commun 3:263–267

    Article  Google Scholar 

  13. Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S, Cavallaro S (2004) H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catal Commun 5:611–615

    Article  CAS  Google Scholar 

  14. de Lima SM, da Silva AM, da Costa LOO, Assaf JM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2010) Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Appl Catal A 377:181–190

    Article  Google Scholar 

  15. Chen H, Yu H, Peng F, Yang G, Wang H, Yang J, Tang Y (2010) Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3. Chem Eng J 160:333–339

    Article  CAS  Google Scholar 

  16. Liu F, Qu Y, Yue Y, Liu G, Liu Y (2015) Nano bimetallic alloy of Ni–Co obtained from LaCoxNi1–xO3 and its catalytic performance for steam reforming of ethanol. RSC Adv 5:16837–16846

    Article  CAS  Google Scholar 

  17. Pena MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2018

    Article  CAS  PubMed  Google Scholar 

  18. Atta NF, Galal A, Ekram H (2016) Perovskite nanomaterials-synthesis, characterization, and applications. InTech, London

    Book  Google Scholar 

  19. Peng Z, Somodi F, Helveg S, Kisielowski C, Specht P, Bell AT (2012) High-resolution in situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles. J Catal 286:22–29

    Article  CAS  Google Scholar 

  20. Ribeiro RU, Liberatori JWC, Winnishofer H, Bueno JMC, Zanchet D (2009) Colloidal Co nanoparticles supported on SiO2: synthesis, characterization and catalytic properties for steam reforming of ethanol. Appl Catal B 91:670–678

    Article  CAS  Google Scholar 

  21. Toniolo FS, Schmal M (2016) Improvement of catalytic performance of perovskites by partial substitution of cations and supporting on high surface area materials. InTech, London

    Book  Google Scholar 

  22. Yi N, Cao Y, Su Y, Dai W-L, He H-Y, Fan K-N (2005) Nanocrystalline LaCoO3 perovskite particles confined in SBA-15 silica as a new efficient catalyst for hydrocarbon oxidation. J Catal 230:249–253

    Article  CAS  Google Scholar 

  23. Zhang J, Weng X, Wu Z, Liu Y, Wang H (2012) Environmental facile synthesis of highly active LaCoO3/MgO composite perovskite via simultaneous co-precipitation in supercritical water. Appl Catal B 126:231–238

    Article  CAS  Google Scholar 

  24. Wang N, Yu X, Wang Y, Chu W, Liu M (2013) A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal Today 212:98–107

    Article  CAS  Google Scholar 

  25. Marinho ALA, Rabelo-Neto RC, Noronha FB, Mattos LV (2016) Steam reforming of ethanol over Ni-based catalysts obtained from LaNiO3 and LaNiO3/CeSiO2 perovskite-type oxides for the production of hydrogen. Appl Catal A 520:53–64

    Article  CAS  Google Scholar 

  26. Toniolo FS (2010) Óxidos mistos do tipo perovskita para a geração de gás de síntese. UFRJ, Tese Doutorado

    Google Scholar 

  27. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  PubMed  Google Scholar 

  28. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 7863:6024–6036

    Article  Google Scholar 

  29. Oemar U, Kathiraser Y, Mo L, Ho XK, Kawi S (2016) CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: mechanism and kinetic modelling. Catal Sci Technol 6:1173–1186

    Article  CAS  Google Scholar 

  30. Zhao L, Han T, Wang H, Zhang L, Liu Y (2016) Environmental Ni–Co alloy catalyst from LaNi1–xCoxO3 perovskite supported on zirconia for steam reforming of ethanol. Appl Catal B 187:19–29

    Article  CAS  Google Scholar 

  31. Li S, Tang H, Gong D, Ma Z, Liu Y (2017) Loading Ni/La2O3 on SiO2 for CO methanation from syngas. Catal Today 297:298–307

    Article  CAS  Google Scholar 

  32. Rivas I, Alvarez J, Pietri E, Pérez-Zurita MJ, Goldwasser MR (2010) Perovskite-type oxides in methane dry reforming: effect of their incorporation into a mesoporous SBA-15 silica-host. Catal Today 149:388–393

    Article  CAS  Google Scholar 

  33. **ao P, Zhu J, Li H, Jiang W, Wang T, Zhu Y, Zhao Y, Li J (2014) Effect of textural structure on the catalytic performance of LaCoO3 for CO oxidation. ChemCatChem 6:1774–1781

    Article  CAS  Google Scholar 

  34. Rabelo-Neto RC, Sales HBE, Inocêncio CVM, Varga E, Oszko A, Erdohelyi A, Noronha FB, Mattos LV (2018) CO2 reforming of methane over supported LaNiO3 perovskite-type oxides. Appl Catal B Environ 221:349–361

    Article  CAS  Google Scholar 

  35. Albuquerque MCG, Jiménez-Urbistondo I, Santamaría-González J, Mérida-Robles JM, Moreno-Tost R, Rodríguez-Castellón E, Jiménez-López A, Azevedo DCS, Cavalcante CL Jr, Maireles-Torres P (2008) CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Appl Catal A Gen 334:35–43

    Article  CAS  Google Scholar 

  36. Grecco STF, Rangel MC, Urquieta-González EA (2013) Zeólitas hierarquicamente estruturadas. Quim Nova 36:131–142

    Article  CAS  Google Scholar 

  37. Liu J-Y, Su W-N, Rick J, Yang S-C, Pan C-J, Lee J-F, Chen J-M, Hwang B-J (2016) Rational design of ethanol steam reforming catalyst based on analysis of Ni/La2O3 metal–support interactions. Catal Sci Technol 6:3449–3456

    Article  CAS  Google Scholar 

  38. Li D, Zeng L, Li X, Wang X, Ma H, Assabumrungrat S, Gong J (2015) Environmental ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl Catal B 176–177:532–541

    Article  Google Scholar 

  39. Nair MM, Kaliaguine S, Kleitz F (2014) Nanocast LaNiO3 perovskites as precursors for the preparation of coke-resistant dry reforming catalysts. ACS Catal 4:3837–3846

    Article  CAS  Google Scholar 

  40. Calles JA, Carrero A, Vizcaíno AJ (2009) Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming. Microporous Mesoporous Mater 119:200–207

    Article  CAS  Google Scholar 

  41. He S, Mei Z, Liu N, Zhang L, Lu J, Li X, Wang J, He D, Luo Y (2017) Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: effect of nickel precursor. Int J Hydrogen Energy 42:14429–14438

    Article  CAS  Google Scholar 

  42. An X, Ren J, Hu W, Wu X, **e X (2020) A highly efficient and stable Ni/SBA-15 catalyst for hydrogen production by ethanol steam reforming. Prog React Kinet Mech 45:1468678319891842

    Article  CAS  Google Scholar 

  43. Carrero A, Calles JA, Vizcaíno AJ (2007) Hydrogen production by ethanol steam reforming over Cu–Ni/SBA-15 supported catalysts prepared by direct synthesis and impregnation. Appl Catal A 327:82–94

    Article  CAS  Google Scholar 

  44. He S, He S, Zhang L, Li X, Wang J, He D, Lu J, Luo Y (2015) Hydrogen production by ethanol steam reforming over Ni/SBA-15 mesoporous catalysts: effect of Au addition. Catal Today 258:162–168

    Article  CAS  Google Scholar 

  45. Chagas CA, Manfro RL, Toniolo FS (2020) Production of hydrogen by steam reforming of ethanol over Pd-promoted Ni/SiO2 catalyst. Catal Lett 150:3424–3436

    Article  CAS  Google Scholar 

  46. Zhurka MD, Lemonidou AA, Anderson JA, Kechagiopoulos PN (2018) Kinetic analysis of the steam reforming of ethanol over Ni/SiO2 for the elucidation of metal-dominated reaction pathways. React Chem Eng 3:883–897

    Article  CAS  Google Scholar 

  47. Arslan A, Gunduz S, Dogu T (2014) Steam reforming of ethanol with zirconia incorporated mesoporous silicate supported catalysts. Int J Hydrogen Energy 39:18264–18272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq (proc. 168086/2018-2), CAPES (code 001), and FAPESP (proc. 2015/06246-7) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Mansur Assaf.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, I.C.S., Assaf, E.M. & Assaf, J.M. Improving Coking Resistance and Catalytic Performance of Ni Catalyst from LaNiO3 Perovskite by Dispersion on SBA-15 Mesoporous Silica for Hydrogen Production by Steam Reforming of Ethanol. Top Catal (2021). https://doi.org/10.1007/s11244-021-01533-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-021-01533-x

Keywords

Navigation