Log in

Synthesis, crystal structures, magnetism and fluorescence of manganese(II) and copper(II) complexes based on 2,5-diketopiperazine-N,N′-diacetic acid ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two novel 2,5-diketopiperazine-N,N′-diacetic acid-based (H2DPDA) metal complexes [Mn(DPDA)0.5(phen)2H2O]2Cl2·2H2O (1) and {[Cu(DPDA)(phen)H2O]·4H2O}n(2)(H2DPDA = 2,5-diketopiperazine-N,N′-diacetic acid, phen = phenanthroline) have been hydrothermally synthesized, and the relationship between magnetism, fluorescence and structure was investigated. Crystal structure analysis shows that (1) 1 and 2 belong to the triclinic crystal system, the p-1 space group; (2) 2 shows a 1-dimensional zigzag chain structure. Thermogravimetric analysis shows that the complex 1 has better stability than 2. Magnetic measurements show that 1 exhibits antiferromagnetism but 2 exhibits ferromagnetism. Fluorescence test shows that 1 and 2 have luminescent properties and emits blue fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang L, Li Y, You A, Jiang J, Zou X-Z, Chen J-W, Gu J-Z, Kirillov AM (2016) Zinc(II) and lead(II) metal-organic networks driven by a multifunctional pyridine-carboxylate building block: hydrothermal synthesis, structural and topological features, and luminescence properties. J Mol Struct 1120:327–332. https://doi.org/10.1016/j.molstruc.2016.05.013

    Article  CAS  Google Scholar 

  2. Zink DM, Bächle M, Baumann T, Nieger M, Kühn M, Wang C, Klopper W, Monkowius U, Hofbeck T, Yersin H, Bräse S (2012) Synthesis, structure, and characterization of dinuclear copper(I) halide complexes with P^N ligands featuring exciting photoluminescence properties. Inorg Chem 52(5):2292–2305. https://doi.org/10.1021/ic300979c

    Article  CAS  PubMed  Google Scholar 

  3. Xue Z-J, Wang X-Q, Zhang X, Wang X-X, Hu T-P (2017) Fluorescent and magnetic properties of two Cu(II) and Cd(II) coordination polymers based on semirigid tripodal carboxylate ligand. Polyhedron 121:245–251. https://doi.org/10.1016/j.poly.2016.10.017

    Article  CAS  Google Scholar 

  4. Zhang Y-P, Zhang M, Chen X-R, Lu C, Young DJ, Ren Z-G, Lang J-P (2020) Cobalt(II) and nickel(II) complexes of a PNN type ligand as photoenhanced electrocatalysts for the hydrogen evolution reaction. Inorg Chem 59(2):1038–1045. https://doi.org/10.1021/acs.inorgchem.9b02497

    Article  CAS  PubMed  Google Scholar 

  5. Zhuang G-l, Chen W-l, Zheng J, Yu H-y, Wang J-g (2012) N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: synthesis, magnetism and quantum Monte Carlo studies. J Solid State Chem 192:284–288. https://doi.org/10.1016/j.jssc.2012.04.031

    Article  CAS  Google Scholar 

  6. Jheng N-Y, Ishizaka Y, Naganawa Y, Minami Y, Sekiguchi A, Iizuka K, Nakajima Y (2022) Radical hydrodehalogenation of aryl halides with H2 catalyzed by a phenanthroline-based PNNP cobalt(I) complex. ACS Catal 12(4):2320–2329. https://doi.org/10.1021/acscatal.1c04797

    Article  CAS  Google Scholar 

  7. Ünver H, Kakavand M, Neshat A (2023) Synthesis, characterization and catalytic activity of novel monometallic and bimetallic Mn(II) complexes with thiocarboxamide and phenanthroline ligands. Transition Met Chem 48(3):157–166. https://doi.org/10.1007/s11243-023-00532-z

    Article  CAS  Google Scholar 

  8. Dong X, Li D, Li Y, Sakiyama H, Muddassir M, Pan Y, Srivastava D, Kumar A (2022) A 3,8-connected Cd(ii)-based metal–organic framework as an appropriate luminescent sensor for the antibiotic sulfasalazine. Cryst Eng Comm 24(40):7157–7165. https://doi.org/10.1039/d2ce01079h

    Article  CAS  Google Scholar 

  9. Smith CS, Mann KR (2009) Void space containing crystalline Cu(I) phenanthroline complexes as molecular oxygen sensors. Chem Mater 21(21):5042–5049. https://doi.org/10.1021/cm901109n

    Article  CAS  Google Scholar 

  10. Çiftçi E, Alp Arıcı T, Arıcı M, Erer H, Yeşilel OZ (2022) Synthesis, characterization and dye adsorption property of a 2D nickel(ii)-coordination polymer constructed from tetracarboxylic acid and 1,3-bis(imidazol-1-yl-methyl)benzene. CrystEngComm 24(42):7440–7446. https://doi.org/10.1039/d2ce00897a

    Article  CAS  Google Scholar 

  11. Lu L, Wang J, Shi C, Sun Y, Wu W, Pan Y, Muddassir M (2021) Four structural diversity MOF-photocatalysts readily prepared for the degradation of the methyl violet dye under UV-visible light. New J Chem 45(2):551–560. https://doi.org/10.1039/d0nj04478d

    Article  CAS  Google Scholar 

  12. Wang X, Zhao J, Le M, Lin H, Luan J, Liu G, Wang X (2017) A Cd-coordination polymer based on a Bis-pyridyl-bis-amide ligand: synthesis, structure and its application in removal organic dyes. J Inorg Organomet Polym Mater 28(3):800–804. https://doi.org/10.1007/s10904-017-0754-y

    Article  CAS  Google Scholar 

  13. Zuo W, Fan Y, Yang L, Cui L (2019) Synthesis, structure and photocatalytic dye degradation ability of Co(II)-based coordination polymers. J Inorg Organomet Polym Mater 30(6):2105–2113. https://doi.org/10.1007/s10904-019-01356-0

    Article  CAS  Google Scholar 

  14. Pendar A, Duyar C, Zorlu Y, Davarcı D (2024) Ag(I) and Hg(II) coordination polymers decorated from fully benzimidazole substituted cyclotriphosphazene ligand and adsorption behaviour against methylene blue. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02949-6

    Article  Google Scholar 

  15. Li C, Li Y, Huang K, Liu F, Gan Y, Cui L (2023) Synthesis, structure, selective and sensitive sensing for tetracycline of a Zn–MOF. J Inorg Organomet Polym Mater 33(6):1586–1591. https://doi.org/10.1007/s10904-023-02581-4

    Article  CAS  Google Scholar 

  16. Chaudhary RG, Juneja HD, Gharpure MP (2012) Thermal degradation behaviour of some metal chelate polymer compounds with bis(bidentate) ligand by TG/DTG/DTA. J Therm Anal Calorim 112(2):637–647. https://doi.org/10.1007/s10973-012-2616-8

    Article  CAS  Google Scholar 

  17. Zhao F-H, Li Y-S, Feng R, Zhao Z-H, Li Z-L (2023) Two Cd(II) MOFs of flexible aliphatic dicarboxylate ligands and 1,4-Bis[(2-methyl-1H-imidazol-1-yl)-methyl]benzene: synthesis, crystal structures and selective sensing of Fe3+. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02864-w

    Article  Google Scholar 

  18. Xu Y, Wang T, Li Y, Li S, Zhang Y, Wang J, Li F, Jiang H (2024) NNN pincer palladium(II) complexes with N-(2-(1H-pyrazol-1-yl)phenyl)-picolinamide ligands: synthesis, characterization, and application to heck coupling reaction. Transition Met Chem. https://doi.org/10.1007/s11243-023-00570-7

    Article  Google Scholar 

  19. Nath JK (2024) Synthesis, supramolecular insight, Hirshfeld surface analyses and optical properties of Fe(II) and Cu(II) complexes of flexible imidazole tethered 1,8-naphthalimide. Transition Met Chem. https://doi.org/10.1007/s11243-024-00572-z

    Article  Google Scholar 

  20. Mandal U, Rizzoli C, Chakraborty B, Karmakar S, Mandal S, Bandyopadhyay D (2024) Synthesis, crystal structure, and characterization of two new end-to-end 1D pseudohalide bridged manganese(III) complexes. Transition Met Chem. https://doi.org/10.1007/s11243-023-00569-0

    Article  Google Scholar 

  21. Bagade R, Chaudhary RG, Potbhare A, Mondal A, Desimone M, Dadure K, Mishra R, Juneja H (2019) Microspheres/custard-apples copper (II) chelate polymer: characterization, docking. Antioxid Antibact Assay ChemistrySelect 4(20):6233–6244. https://doi.org/10.1002/slct.201901115

    Article  CAS  Google Scholar 

  22. Zhang G-M, Li Y, Zou X-Z, Zhang J-A, Gu J-Z, Kirillov AM (2015) Nickel(II) and manganese(II) metal–organic networks driven by 2,2′-bipyridine-5,5′-dicarboxylate blocks: synthesis, structural features, and magnetic properties. Transition Met Chem 41(2):153–160. https://doi.org/10.1007/s11243-015-0007-2

    Article  CAS  Google Scholar 

  23. Chen S-S, Sheng L-Q, Zhao Y, Liu Z-D, Qiao R, Yang S (2015) Syntheses, structures, and properties of a series of polyazaheteroaromatic core-based Zn(II) coordination polymers together with carboxylate auxiliary ligands. Cryst Growth Des 16(1):229–241. https://doi.org/10.1021/acs.cgd.5b01133

    Article  CAS  Google Scholar 

  24. Shi C, ** S, Zhen Y, Xu W, Wang D (2023) Constructions of seven noncovalent-bonded 3D supramolecules from reactions of Zn(II)/Cd(II) with 4-dimethylaminopyridine and carboxylic acids. J Inorg Organomet Polym Mater 34(1):235–250. https://doi.org/10.1007/s10904-023-02796-5

    Article  CAS  Google Scholar 

  25. Liu G-F, Ye B-H, Ling Y-H, Chen X-M (2002) Interlocking of molecular rhombi into a 2D polyrotaxane network via π–π interactions. Crystal structure of [Cu2(bpa)2(phen)2(H2O)]2·2H2O (bpa2– = biphenyl-4,4′-dicarboxylate, phen = 1,10-phenanthroline). Chem Commun 14:1442–1443. https://doi.org/10.1039/b202716j

    Article  CAS  Google Scholar 

  26. Ma C-B, Chen C-N, Liu Q-T (2005) Framework variations in Mn(ii)–organic coordination polymers: solvent templated formation and characterisation of 1D zigzag and straight chain network isomers. Cryst Eng Comm. https://doi.org/10.1039/b511909j

    Article  Google Scholar 

  27. Zhao Q, Li Q-y, Li J (2022) Structures, fluorescence and magnetism of a series of coordination polymers driven by a tricarboxypyridine ligand. Cryst Eng Comm 24(38):6751–6761. https://doi.org/10.1039/d2ce00726f

    Article  CAS  Google Scholar 

  28. Ramos Silva M, Matos Beja A, Paixão JA, Sobral AJFN, Cabral LML, Rocha Gonsalves AMdA (2003) R_{\bf 4}^{\bf 4}(30) rectangular rings in 2,5-dioxopiperazine-1,4-diacetic acid. Acta Crystallogr C 59(10):o562–o563. https://doi.org/10.1107/s0108270103017803

    Article  PubMed  Google Scholar 

  29. Zhuang G-l, Tan L, Chen W-l, Zheng J, Yao H-z, Zhong X, Wang J-g (2014) Experimental, DFT and quantum Monte Carlo studies of a series of peptide-based metal–organic frameworks: synthesis, structures and properties. Inorg Chem Front 1(7):526–533. https://doi.org/10.1039/c4qi00043a

    Article  CAS  Google Scholar 

  30. Chen W-l, Chen W-X, Zhuang G-l, Zheng J, Tan L, Zhong X, Wang J-g (2013) The effect of earth metal ion on the property of peptide-based metal–organic frameworks. Cryst Eng Comm. https://doi.org/10.1039/c3ce40587g

    Article  Google Scholar 

  31. Zhuang G-L, Kong X-J, Long L-S, Huang R-B, Zheng L-S (2010) Effect of lanthanide contraction on crystal structures of lanthanide coordination polymers with 2,5-piperazinedione-1,4-diacetic acid. Cryst Eng Comm. https://doi.org/10.1039/c001537g

    Article  Google Scholar 

  32. Chen W-X, Liu Q-P, Zhuang G-L, Zhou S-J (2012) A novel LaIII-based metal–organic framework (MOF) with a new topology: poly[diaquabis(μ5-2,5-dioxopiperazine-1,4-diacetato)(μ2-oxalato)dilanthanum(III)]. Acta Crystallogr C 69(1):5–7. https://doi.org/10.1107/s0108270112048184

    Article  PubMed  Google Scholar 

  33. Kong X-J, Zhuang G-L, Ren Y-P, Long L-S, Huang R-B, Zheng L-S (2009) In situ cyclodehydration of iminodiacetic acid into 2,5-diketopiperazine-1,4-diacetate in lanthanide-based coordination polymers. Dalton Trans (10):1707–1709. https://doi.org/10.1039/b819792j

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21763015) and Kunming University of Science and Technology Test Fund (2022M20212111110, 2023M20222111098)

Author information

Authors and Affiliations

Authors

Contributions

Wang M-J and Ma Y-P took part in ligand and metal complex synthesis, single-crystal XRD studies, writing characterization part and contribution to original draft writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong** Ma.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Ma, Y., Wu, C. et al. Synthesis, crystal structures, magnetism and fluorescence of manganese(II) and copper(II) complexes based on 2,5-diketopiperazine-N,N′-diacetic acid ligands. Transit Met Chem (2024). https://doi.org/10.1007/s11243-024-00592-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11243-024-00592-9

Navigation