Log in

Synthesis and ethylene oligomerization behavior of trinuclear nickel complex with phosphorus dendrimer

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A phosphorus dendrimer with multiple amino groups was synthesized via a two-step reaction with phosphonitrilic chloride trimer and 4-acetamidophenol. The trinuclear nickel complex was subsequently prepared with the phosphorus dendrimer and nickel chloride hexahydrate as starting materials. The structures of the phosphorus dendrimer and the trinuclear nickel complex were characterized by physicochemical and spectroscopic methods. The trinuclear nickel complex based on the phosphorus dendrimer was evaluated as catalyst precursor for ethylene oligomerization using methylaluminoxane (MAO) as an activator. Under the conditions of 0.5 h, 0.9 MPa, 25 °C and Al/Ni molar ratio of 700, the catalytic activity of the trinuclear nickel complex showed a maximum value of 2.31 × 105 g/(mol Ni h), and the oligomerization products were mainly low-carbon olefins (C4 and C6). The ligand structure and the coordination mode showed notable variations in the catalytic activities and the product distribution due to the influence of electronic and steric effects. The catalytic activity of the nickel complex based on the ligand with an aryl backbone was superior to the nickel complex based on the ligand with an alkyl backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Bahuleyan BK, Ahn IY, Appukuttan V, Lee SH, Ha CS, Kim I, Suh H (2010) Macromol Res 18(7):701–704

    Article  CAS  Google Scholar 

  2. Forestière A, Olivier-Bourbigou H, Saussine L (2009) Oil Gas Sci Technol 64(6):649–667

    Article  Google Scholar 

  3. Belov GP, Matkovsky PE (2010) Petrol Chem+ 50(4):283–289

  4. Van Leeuwen PW, Clément ND, Tschan MJL (2011) Coordin Chem Rev 255(13–14):1499–1517

    Article  Google Scholar 

  5. Huang YW, Wei W, Meng XJ, Zhang L, Chen YH, Jiang T (2018) Appl Organomet Chem 32(2):e4014

  6. Meng XJ, Zhang L, Chen YH, Jiang T (2016) React Kinet Mech Cat 119(2):481–490

    Article  CAS  Google Scholar 

  7. Mu HL, Pan L, Song DP, Li YS (2015) Chem Rev 115(22):12091–12137

    Article  CAS  Google Scholar 

  8. Wang H, Yan W, Jiang T, Liu BB, Xu WQ, Ma JJ, Hu YL (2002) Chin Sci Bull 47(19):1616–1618

    CAS  Google Scholar 

  9. Johnson LK, Killian CM, Brookhart M (1995) J Am Chem Soc 117(23):6414–6415

    Article  CAS  Google Scholar 

  10. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100(4):1169–1204

    Article  CAS  Google Scholar 

  11. Luk YYG, Foucher DA, Gossage RA (2013) CR Chim 16(6):73–579

    Article  Google Scholar 

  12. Olivier-Bourbigou H, Breuil PAR, Magna L, Michel T, Espada Pastor MF, Delcroix D (2020) Chem Rev 120(15):7919–7983

    Article  CAS  Google Scholar 

  13. Wei W, Yu BW, Alam F, Huang YW, Cheng SL, Jiang T (2019) Transit Metal Chem 44(2):125–133

    Article  CAS  Google Scholar 

  14. Ainooson MK, Ojwach SO, Guzei IA, Spencer LC, Darkwa J (2011) J Organomet Chem 696(8):1528–1535

    Article  CAS  Google Scholar 

  15. Gibson VC, Spitzmesser SK (2003) Chem Rev 103(1):283–316

    Article  CAS  Google Scholar 

  16. Britovsek GJ, Bruce M, Gibson VC, Kimberley BS, Maddox PJ, Mastroianni S, McTavish SJ, Redshaw C, Solan GA, Strömberg S, White AJP, Williams DJ (1999) J Am Chem Soc 121(38):8728–8740

    Article  CAS  Google Scholar 

  17. Delferro M, Marks TJ (2011) Chem Rev 111(3):2450–2485

    Article  CAS  Google Scholar 

  18. Luo HK, Schumann H (2005) J Mol Catal A-Chem 227(1–2):153–161

    Article  CAS  Google Scholar 

  19. **ao LW, Jie SY, Song YG, Cao XP, Sun WH (2008) J Organomet Chem 693(26):3858–3866

    Article  CAS  Google Scholar 

  20. Na YN, Wang XB, Lian KB, Zhu Y, Li WM, Luo Y, Chen CL (2017) ChemCatChem 9(6):1062–1066

    Article  CAS  Google Scholar 

  21. Ahamad T, Alshehri SM, Mapolie SF (2010) Catal Lett 138(3):171–179

    Article  CAS  Google Scholar 

  22. Smith G, Chen R, Mapolie S (2010) J Organomet Chem 673(1–2):111–115

    Google Scholar 

  23. Wang D, Astruc D (2013) Coordin Chem Rev 257(15–16):2317–2334

    Article  CAS  Google Scholar 

  24. Ouali A, Laurent R, Caminade AM, Majoral JP, Taillefer M (2006) J Am Chem Soc 128(50):15990–15991

    Article  CAS  Google Scholar 

  25. Jiang P, Gu XY, Zhang S, Wu SD, Zhao Q, Hu ZW (2015) Ind Eng Chem Res 54(11):2974–2982

    Article  CAS  Google Scholar 

  26. Li CQ, Wang FF, Lin ZY, Zhang N, Wang J (2016) Inorg Chim Acta 453:430–438

    Article  CAS  Google Scholar 

  27. Qiu SL, Ma C, Wang X, Zhou X, Feng XM, Yuen RK, Hu Y (2018) J Hazard Mate 344:839–848

    Article  CAS  Google Scholar 

  28. Zhou X, Mu XW, Cai W, Wang JL, Chu FK, Xu ZM, Song L, **ng WY, Hu Y (2019) Acs Appl Mater Inter 11(44):41736–41749

    Article  CAS  Google Scholar 

  29. Zhou X, Qiu SL, He LX, Wang X, Zhu YL, Chu FK, Wang BB, Song L, Hu Y (2021) Chem Eng J 6:130655

  30. Wang J, Zhang N, Li CQ, Shi WG, Lin ZY (2016) J Organomet Chem 822:104–111

    Article  CAS  Google Scholar 

  31. Xue R, Guo H, Wang T, Wang X, Ai JB, Yue LG, Wei YL, Yang W (2017) Mater Lett 209:171–174

    Article  CAS  Google Scholar 

  32. Bai YW, Wang XD, Wu DZ (2012) Ind Eng Chem Res 51(46):15064–15074

    Article  CAS  Google Scholar 

  33. Chen LD, Jiang Y, Huo HL, Liu JY, Li YY, Li CQ, Zhang N, Wang J (2020) Appl Catal A-Gen 594:117457

  34. Zhang N, Wu YS, Li YY, Chen LD, Zhang MS, Wang J (2021) Polym Bull 1–13

  35. Yang WH, Yi J, Ma ZF, Sun WH (2017) Catal Commun 101:40–43

    Article  CAS  Google Scholar 

  36. Bekmukhaedov GE, Sukhov AV, Kuchkaev AM, Yakhvarov DG (2020) Catalysts 10(5):498

    Article  Google Scholar 

  37. Skupinska J (1991) Chem Rev 91(4):613–648

    Article  CAS  Google Scholar 

  38. Helldörfer M, Milius W, Alt HG (2003) J Mol Catal A-Chem 197(1–2):1–13

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Heilongjiang Scientific Research Foundation for Postdoctoral Settlement of China (16190023) for the financial support. We are grateful to State Key Lab of Inorganic Synthesis and Preparative Chemistry of Jilin University and Analysis and Test Center of Northeast Petroleum University for the characterization work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiqin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Huang, J., Chen, N. et al. Synthesis and ethylene oligomerization behavior of trinuclear nickel complex with phosphorus dendrimer. Transit Met Chem 47, 1–9 (2022). https://doi.org/10.1007/s11243-021-00483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00483-3

Navigation