Log in

Two diverse temperature-directed cobalt-based coordination polymers: environmentally friendly photocatalysts for degradation of organic dyes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two new cobalt-based coordination polymers (CPs) based on a semirigid naphthalene-bridged bis-pyridyl-bis-amide ligand, namely [Co(4-bmnpd)(5-HNIP)2(H2O)2] (1) and [Co4(4-bmnpd)4(5-NIP)4]·2H2O (2) (4-bmnpd = N,N′-bis(4-methylenepyridin-4-yl)-2,6-naphthalenedicarboxamide, 5-H2NIP = 5-nitroisophthalic acid), have been prepared under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction analyses, infrared (IR) spectroscopy, and powder X-ray diffraction (PXRD). The structural analyses show that 1 has a one-dimensional (1D) chain structure while 2 exhibits a two-dimensional (2D) network. The effect of temperature on the structures of the CPs is discussed. The solid-state fluorescent properties of 1 and 2 were determined at room temperature. Furthermore, their photocatalytic degradation properties were also studied. Photocatalysts 1 and 2 are environmentally friendly and can effectively degrade organic dye Congo Red (CR) under ultraviolet (UV) light. In addition, the possible degradation mechanism was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almashhori K, Ali TT, Saeed A (2020) New J Chem 44:562–570

    Article  CAS  Google Scholar 

  2. Konavarapu SK, Biradha K (2019) Cryst Growth Des 19:362–368

    Article  CAS  Google Scholar 

  3. Zhang S, Wang X, Zhang HX, Zhao ZH, Wang XL (2018) Chin Chem Lett 29:309–312

    Article  CAS  Google Scholar 

  4. Wang CC, Li JR, Lv XL, Zhang YQ, Guo GS (2014) Energy Environ Sci 7:2831–2867

    Article  CAS  Google Scholar 

  5. Chen CC, Ma WH, Zhao JC (2010) Chem Soc Rev 39:4206–4219

    Article  CAS  PubMed  Google Scholar 

  6. Neumann CN, Rozeveld SJ, Yu M, Rieth AJ, Dinca M (2019) J Am Chem Soc 141:17477–17481

    Article  CAS  PubMed  Google Scholar 

  7. Choi H, Peters AW, Noh H, Gallington LC, Platero-Prats AE, Destefano MR, Rimoldi M, Goswami S, Chapman KW, Farha OK, Hupp JT (2019) ACS Appl Energy Mater 2:8695–8700

    Article  CAS  Google Scholar 

  8. **ao QQ, Dong GY, Li YH, Cui GH (2019) Inorg Chem 58:15696–15699

    Article  CAS  PubMed  Google Scholar 

  9. Kuyuldar S, Genna DT, Burda C (2019) J Mater Chem A 7:21545–21576

    Article  CAS  Google Scholar 

  10. Akashdeep N, Islam SS, Mukharjee PK, Nath R, Mandal S (2019) Cryst Growth Des 19:6463–6471

    Article  CAS  Google Scholar 

  11. Liu GC, Lu X, Li XW, Wang XL, Xu N, Li Y, Lin HY, Chen YQ (2019) ACS Omega 4:17366–17378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu GC, Li Y, Chi J, Xu N, Wang XL, Lin HY, Chen YQ (2020) Dyes Pigments 174:108064

    Article  CAS  Google Scholar 

  13. Mandal A, Ganguly S, Mukherjeea S, Das D (2019) Dalton Trans 48:13869–13879

    Article  CAS  PubMed  Google Scholar 

  14. Pan Y, Ding QJ, Xu HJ, Shi CY, Singh A, Kumar A, Liu JQ (2019) CrystEngComm 21:4578–4585

    Article  CAS  Google Scholar 

  15. Li CP, Lu L, Wang J, Yang QQ, Ma DY, Alowais A, Alarifi A, Kumar A, Muddassir M (2019) RSC Adv 9:29864–29872

    Article  CAS  Google Scholar 

  16. Lin XM, Lin J, Deng H, Reddy RCK, Liu JC (2020) Inorg Chem 59:460–471

    Article  CAS  PubMed  Google Scholar 

  17. Tang L, Wang HH, Fu YH, Wang YT, Wang JJ, Hou XY (2019) RSC Adv 9:38902–38911

    Article  CAS  Google Scholar 

  18. Han ML, Bai L, Tang P, Wu XQ, Wu YP, Zhao J, Li DS, Wang YY (2015) Dalton Trans 44:14673–14685

    Article  CAS  PubMed  Google Scholar 

  19. Wan J, Cai SL, Zhang K, Li CJ, Feng Y, Fan J, Zheng SR, Zhang WG (2016) CrystEngComm 18:5164–5176

    Article  CAS  Google Scholar 

  20. Farger P, Leuvrey C, Rogez G, François M, Rabu P, Delahaye E (2019) Cryst Growth Des 19:4264–4272

    Article  CAS  Google Scholar 

  21. Pantalon Juraj N, Miletic GI, Peric B, Popovic Z, Smrecki N, Vianello R, Kirin SI (2019) Inorg Chem 58:16445–16457

    Article  CAS  PubMed  Google Scholar 

  22. Shi YS, Li YH, Cui GH, Dong GY (2020) CrystEngComm 22:905–914

    Article  CAS  Google Scholar 

  23. Wei XJ, Liu D, Li YH, Cui GH (2019) J Solid State Chem 272:138–147

    Article  CAS  Google Scholar 

  24. Yang YJ, Li YH, Liu D, Cui GH (2020) CrystEngComm 22:1166–1175

    Article  CAS  Google Scholar 

  25. Adarsh NN, Kumar DK, Suresh E, Dastidar P (2010) Inorg Chim Acta 363:1367–1376

    Article  CAS  Google Scholar 

  26. Adarsh NN, Kumar DK, Dastidar P (2009) CrystEngComm 11:796–802

    Article  CAS  Google Scholar 

  27. Gong Y, Li J, Qin JB, Wu T, Cao R, Li JH (2011) Cryst Growth Des 11:1662–1674

    Article  CAS  Google Scholar 

  28. Karthikeyan M, Ramakrishna B, Vellaiyadevan S, Divya D, Manimaran D (2018) ACS Omega 3:3257–3266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hsu CH, Huang WC, Yang XK, Yang CT, Mahat Chhetri P, Chen JD (2019) Cryst Growth Des 19:1728–1737

    Article  CAS  Google Scholar 

  30. Banerjee S, Dastidar P (2011) Cryst Growth Des 11:5592–5597

    Article  CAS  Google Scholar 

  31. Mondal S (2019) Cryst Growth Des 19:470–478

    Article  CAS  Google Scholar 

  32. Zhang J, Liang JX, Wang Y, Zhai LJ, Niu XY, Hu TP (2020) Cryst Growth Des 20:460–467

    Article  CAS  Google Scholar 

  33. Babal AS, Donà L, Ryder MR, Titov K, Chaudhari AK, Zeng ZX, Kelley CS, Frogley MD, Cinque G, Civalleri B, Tan JC (2019) J Phys Chem C 123:29427–29435

    Article  CAS  Google Scholar 

  34. Pisačić M, Kodrin I, Matijaković N, Chatterjee N, Oliver CL, Kukovec BM, Đaković M (2020) Cryst Growth Des 20:401–413

    Article  CAS  Google Scholar 

  35. Sarka M, Biradha K (2006) Cryst Growth Des 61:202–208

    Article  CAS  Google Scholar 

  36. Sheldrick GM (2015) Acta Crystallogr Sect A Found Crystallog 71:3–8

    Article  CAS  Google Scholar 

  37. Gheorghe A, Imaz I, Ivar van der Vlugt J, Maspoch D, Tanase S (2019) Dalton Trans 48:10043–10050

    Article  CAS  PubMed  Google Scholar 

  38. Yang R, Van Hecke K, Yu BY, Li GY, Cui HG (2014) Trans Metal Chem 39:535–541

    Article  CAS  Google Scholar 

  39. Kalman CJ, Stone BS, LaDuca RL (2019) Polyhedron 170:674–682

    Article  CAS  Google Scholar 

  40. Shukla SK, Maithani A, Srivastava D (2013) Des Monom Polym 17:69–77

    Article  CAS  Google Scholar 

  41. Qin YT, Wang BW, Li JY, Wu XC, Chen LG (2019) Trans Metal Chem 44:595–602

    Article  CAS  Google Scholar 

  42. Wang XL, **ong Y, Liu GC, Lin HY, Wang X (2018) Dalton Trans 47:9903–9911

    Article  CAS  PubMed  Google Scholar 

  43. Bisht KK, Rachuri Y, Parmar B, Suresh E (2014) J Solid State Chem 213:43–51

    Article  CAS  Google Scholar 

  44. Yi XH, Wang FX, Du XD, Fu H, Wang CC (2018) Polyhedron 152:216–224

    Article  CAS  Google Scholar 

  45. Lu JF, Yu XH, Zhou K, Roy SM, Yue SY, Li L, Zhao CB, ** LX (2019) Trans Metal Chem 44:641–647

    Article  CAS  Google Scholar 

  46. Natarajan K, Gupta A, Ansari SN, Saraf M, Mobin SM (2019) ACS Appl Mater Interfaces 11:13295–13303

    Article  CAS  PubMed  Google Scholar 

  47. Song WC, Liang L, Cui XZ, Wang XG, Yang EC, Zhao XJ (2018) CrystEngComm 20:668–678

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported Liao Ning Revitalization Talents Program (XLYC1902011) and the National Natural Science Foundation of China (nos. 21971024, 21671025), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **u-Li Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Wang, XL., Liu, GC. et al. Two diverse temperature-directed cobalt-based coordination polymers: environmentally friendly photocatalysts for degradation of organic dyes. Transit Met Chem 46, 103–109 (2021). https://doi.org/10.1007/s11243-020-00426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00426-4

Navigation