Log in

Mono- and dinuclear palladium(II) complexes incorporating 1,2,3-triazole-derived mesoionic carbenes: syntheses, solid-state structures and catalytic applications

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two 1,2,3-triazole-derived monocationic salts 3 and 4 bearing N-aryl wingtips were prepared using copper-catalyzed “click” reactions followed by alkylations with iodomethane. Employing a silver–carbene transfer method, two dinuclear palladium(II) complexes of triazolin-5-ylidenes (5/6) were obtained, the former of which has been reported previously. Bridge-cleavage reaction of 5 as a representative with PPh3 yielded cis-configured mesoionic carbene/phosphine hybrid complex cis-7 and homoleptic bis(phosphine) complex 8, suggesting the presence of a ligand exchange process. In contrast, bridge breakages of 5/6 with pyridine cleanly afforded PEPPSI-type complexes 9 and 10 in near quantitative yields. Finally, all complexes were exploited to catalyze Mizoroki–Heck coupling reactions with aryl bromides as the substrates, and PEPPSI-type complex 9 was found to be the best performer generally giving good to excellent yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4

Similar content being viewed by others

Notes

  1. For selected reviews, see [1,2,3,4,5,6,7,8,9,10].

  2. For selected examples of the type I with imdazolin-2-ylidenes as the supporting ligands, see [11,12,13]. For selected examples of the type I with benzimdazolin-2-ylidenes as the supporting ligands, see [14, 15].

  3. For selected reviews on PEPPSI-type complexes, see [16, 17].

  4. See [18].

  5. For selected reviews on mesoionic carbenes, see [19,20,21,22,23,24].

  6. See [25,26,27].

  7. See [28].

  8. For the paper providing the first example of 1,2,3-triazolin-5-ylidene complex, see [29]. For selected reviews on 1,2,3-triazolin-5-ylidenes and their complexes, see [30, 31].

  9. For selected reviews on copper-catalyzed click reactions, see [32,33,34].

  10. For selected examples of hybrid complexes bearing MICs in analogy to I, see [35,36,37,38,39].

  11. Complex [CuCl(IPr)] has been previously employed to catalyze azide-alkyne cycloaddition reactions. For selected papers and reviews, see [40,41,42].

  12. For earlier reports on the syntheses and characterizations of triazole 1 and salt 3, see [43,44,45].

  13. The aryl C–Ha proton expectedly give a doublet with a small coupling constant of ~ 2–3 Hz, due to (i) the absence of protons attached to the Cortho atoms and (ii) the splitting by C–H protons of the Cmeta atoms. In our case, a singlet was observed probably due to the low resolution of NMR spectrometer.

  14. For a review on agostic and anagostic interactions, see [46].

  15. For selected publications reporting the crystal data of trans-[PdI2(PPh3)2], see [47, 48].

  16. The term “transphobia effect” was first coined by Vicente and Jones’s groups. For this paper, see [49].

  17. For selected examples, see [50, 51].

  18. For a paper on the definition of π–π stacking, see [52].

  19. See [53].

  20. See [54].

References

  1. Hahn FE, Jahnke MC (2008) Angew Chem Int Ed 47:3122–3172

    Article  CAS  Google Scholar 

  2. Gu S, Chen C, Chen W (2011) Curr Org Chem 15:3291–3308

    Article  CAS  Google Scholar 

  3. Díez-González S, Marion N, Nolan SP (2009) Chem Rev 109:3612–3676

    Article  CAS  PubMed  Google Scholar 

  4. Normand AT, Cavell KJ (2008) Eur J Inorg Chem 18:2781–2800

    Article  CAS  Google Scholar 

  5. Schaper LA, Hock SJ, Herrmann WA, Kühn FE (2013) Angew Chem Int Ed 52:270–289

    Article  CAS  Google Scholar 

  6. Peris E (2017) Chem Rev. https://doi.org/10.1021/acs.chemrev.6b00695

    Article  PubMed  Google Scholar 

  7. Hameury S, de Frémont P, Braunstein P (2017) Chem Soc Rev 46:632–733

    Article  CAS  PubMed  Google Scholar 

  8. Janssen-Müller D, Schlepphorst C, Glorius F (2017) Chem Soc Rev 46:4845–4854

    Article  PubMed  Google Scholar 

  9. Kantchev EAB, O’Brien CJ, Organ MG (2007) Angew Chem Int Ed 46:2768–2813

    Article  CAS  Google Scholar 

  10. Fortman GC, Nolan SP (2011) Chem Soc Rev 40:5151–5169

    Article  CAS  PubMed  Google Scholar 

  11. Herrmann WA, Böhm VPW, Gstöttmayr CWK, Grosche M, Reisinger CP, Weskamp T (2001) J Organomet Chem 617–618:616–628

    Article  Google Scholar 

  12. Yang J (2017) Appl Organomet Chem 31:3734–3739

    Article  CAS  Google Scholar 

  13. Farmer JL, Pompeo M, Lough AJ, Organ MG (2014) Chem Eur J 20:15790–15798

    Article  CAS  PubMed  Google Scholar 

  14. Huynh HV, Han Y, Ho JHH, Tan GK (2006) Organometallics 25:3267–3274

    Article  CAS  Google Scholar 

  15. Huynh HV, Han Y, Jothibasu R, Yang JA (2009) Organometallics 28:5395–5404

    Article  CAS  Google Scholar 

  16. Valente C, Pompeo M, Sayah M, Organ MG (2014) Org Process Res Dev 18:180–190

    Article  CAS  Google Scholar 

  17. Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG (2012) Angew Chem Int Ed 51:3314–3332

    Article  CAS  Google Scholar 

  18. Arduengo AJ III, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363

    Article  CAS  Google Scholar 

  19. Crabtree RH (2013) Coord Chem Rev 257:755–766

    Article  CAS  Google Scholar 

  20. Shuster O, Yang L, Raubenheimer HG, Albrecht M (2009) Chem Rev 109:3445–3478

    Article  CAS  Google Scholar 

  21. Albrecht M (2008) Chem Commun 31:3601–3610

    Article  CAS  Google Scholar 

  22. Arnold PL, Pearson S (2007) Coord Chem Rev 251:596–609

    Article  CAS  Google Scholar 

  23. Krüger A, Albrecht M (2011) Aust J Chem 64:1113–1117

    Article  CAS  Google Scholar 

  24. Poulain A, Iglesias M, Albrecht M (2011) Curr Org Chem 15:3325–3336

    Article  CAS  Google Scholar 

  25. Tolman CA (1970) J Am Chem Soc 92:2953–2956

    Article  CAS  Google Scholar 

  26. Dröge T, Glorius F (2010) Angew Chem Int Ed 49:6940–6952

    Article  CAS  Google Scholar 

  27. Nelson DJ, Nolan SP (2013) Chem Soc Rev 42:6723–6753

    Article  CAS  PubMed  Google Scholar 

  28. Teng Q, Huynh HV (2017) Dalton Trans 46:614–627

    Article  CAS  PubMed  Google Scholar 

  29. Mathew P, Neels A, Albrecht M (2008) J Am Chem Soc 130:13534–13535

    Article  CAS  PubMed  Google Scholar 

  30. Donnelly KF, Petronilho A, Albrecht M (2013) Chem Commun 49:1145–1159

    Article  CAS  Google Scholar 

  31. Crowley JD, Lee AL, Kilpin KJ (2011) Aust J Chem 64:1118–1132

    Article  CAS  Google Scholar 

  32. Wang C, Ikhlef D, Kahlal S, Saillardb J, Astruc D (2016) Coord Chem Rev 316:1–20

    Article  CAS  Google Scholar 

  33. Liang L, Astruc D (2011) Coord Chem Rev 255:2933–2945

    Article  CAS  Google Scholar 

  34. Meldal M, Tornøe CW (2008) Chem Rev 108:2952–3015

    Article  CAS  Google Scholar 

  35. Canseco-Gonzalez D, Gniewek A, Szulmanowicz M, Müller-Bunz H, Trzeciak AM, Albrecht M (2012) Chem Eur J 18:6055–6062

    Article  CAS  PubMed  Google Scholar 

  36. Huang J, Hong JT, Hong SH (2012) Eur J Org Chem 33:6630–6635

    Google Scholar 

  37. Mendoza-Espinosa D, Gonzáez-Olvera R, Osornio C, Negrón-Silva GE, Álvarez-Hernández A, Bautista-Hernández CI, Suárez-Castillo OR (2015) J Organomet Chem 803:142–149

    Article  CAS  Google Scholar 

  38. Dasgupta A, Ramkumar V, Sankararaman S (2016) Eur J Org Chem 28:4817–4823

    Article  CAS  Google Scholar 

  39. Sureshbabu B, Ramkumar V, Sankararaman S (2015) J Organomet Chem 799–800:232–238

    Article  CAS  Google Scholar 

  40. Egbert JD, Cazin CSJSP, Nolan SP (2013) Catal. Sci Technol 3:912–926

    CAS  Google Scholar 

  41. Díez-González S (2011) Catal. Sci Technol 1:166–178

    Google Scholar 

  42. Díez-González S, Correa A, Cavallo L, Nolan SP (2006) Chem Eur J 12:7558–7564

    Article  CAS  PubMed  Google Scholar 

  43. Poulain A, Canseco-Gonzalez D, Hynes-Roche R, Müller-Bunz H, Schuster O, Stoeckli-Evans H, Neels A, Albrecht M (2011) Organometallics 30:1021–1029

    Article  CAS  Google Scholar 

  44. Sakamoto T, Uchiyama D, Kondo Y, Yamanaka H (1993) Heterocycles 35:1273–1278

    Article  CAS  Google Scholar 

  45. Fletcher JT, Keeney ME, Walz SE (2010) Synthesis 19:3339–3345

    Article  CAS  Google Scholar 

  46. Brookhart M, Green MLH, Parkin G (2007) PNAS 104:6908–6914

    Article  CAS  PubMed  Google Scholar 

  47. Kubota M, Ohba S, Saito Y (1991) Acta Crystallogr Sect C Cryst Struct Commun 47:1727–1729

    Article  Google Scholar 

  48. Cave GWV, Errington W, Rourke JP (1999) Acta Crystallogr Sect C Cryst Struct Commun 55:320–322

    Article  Google Scholar 

  49. Vicente J, Arcas A, Bautista D, Jones PG (1997) Organometallics 16:2127–2138

    Article  CAS  Google Scholar 

  50. Dasgupta A, Ramkumar V, Sankararaman S (2015) RSC Adv 5:21558–21561

    Article  CAS  Google Scholar 

  51. Modak S, Gangwar MK, Rao MN, Madasu M, Kalita AC, Dorcet V, Shejale MA, Butcher RJ, Ghosh P (2015) Dalton Trans 44:17617–17628

    Article  CAS  PubMed  Google Scholar 

  52. Janiak C (2000) J Chem Soc, Dalton Trans 0:3885–3896

    Article  CAS  Google Scholar 

  53. Herrmann WA, Böhm VPW, Gstöttmayr CWK, Grosche M, Reisinger CP, Weskamp T (2001) J Organomet Chem 617–618:616–628

    Article  Google Scholar 

  54. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds (Grant No. 025185305000/208) and Department of Education of Guangdong Province (Grant No. 2016KCXTD005, 2017KQNCX204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yan, X., Zhang, B. et al. Mono- and dinuclear palladium(II) complexes incorporating 1,2,3-triazole-derived mesoionic carbenes: syntheses, solid-state structures and catalytic applications. Transit Met Chem 44, 39–48 (2019). https://doi.org/10.1007/s11243-018-0267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0267-8

Navigation