Log in

Synthesis and photophysical characterization of ruthenium(II) and platinum(II) complexes with bis-pyridylethynyl-phenanthroline ligands as a metalloligand

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Novel ruthenium complexes Ru(L)(bpy)2(PF6)2 and platinum organometallic complexes Pt(L)(−≡−C6H5CH3)2 with bis-(pyridinyl)ethynyl-phenanthrolines (L = 3,8-bis[2-(3-pyridinyl)ethynyl]-1,10-phenanthroline or 3,8-bis[2-(4-pyridinyl)ethynyl]-1,10-phenanthroline) that function as metalloligands by extra pyridyl units have been prepared using respective synthetic methods. These complexes have broad absorption bands assignable to the MLCT band as the main contributing factor in the 400 to 550 nm wavelength region. Furthermore, these complexes show phosphorescence centered around 680 nm upon excitation at 425 nm. These emissions were assigned to a triplet MLCT-based luminescence for the ruthenium complexes, while a triplet MLCT as the main element, including the interligand charge transfer as the minor element, was assigned for the platinum organometallic complexes. The quantum yields of the emission of the present ruthenium complexes were relatively high, and these complexes are exactly phosphorescent dyes, although the emission intensities of the platinum complexes are poor. These two types of complexes are capable of selective photophysical detection of some metal ions and can serve as metalloligands in the construction of supramolecular metallocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yan X, Cook TR, Wang P, Haung F, Stang PJ (2015) Nat Chem 7:342–348

    Article  CAS  Google Scholar 

  2. Wang M, Vajpayee V, Shanmugaraju S, Zheng YR, Zhao Z, Kim H, Mukherjee PS, Chi KW, Stang PJ (2011) Inorg Chem 50:1506–1512

    Article  CAS  Google Scholar 

  3. Dolain C, Hatakeyama Y, Sawada T, Tashiro S, Fujita M (2010) J Am Chem Soc 132:5564–5565

    Article  CAS  Google Scholar 

  4. Murase T, Nishijima Y, Fujita M (2012) J Am Chem Soc 134:162–164

    Article  CAS  Google Scholar 

  5. Murase T, Sato S, Fujita M (2007) Angew Chem Int Ed 46:5133–5136

    Article  CAS  Google Scholar 

  6. Kang B, Kurutz JW, Youm KT, Totten RK, Hupp JT, Nguyen BT (2012) Chem Sci 3:1938–1944

    Article  CAS  Google Scholar 

  7. Bansal D, Hundal G, Gupta R (2015) Eur J Inorg Chem 2015:1022–1032

  8. Shiotsuka M, Toda T, Matsubara K, Itou Y, Hashimoto T (2013) Trans Met Chem 38:913–922

    Article  CAS  Google Scholar 

  9. Yang J, Bhadbhade M, Donald WA, Iranmanesh H, Moore EG, Yan H, Beves JE (2015) Chem Commun 51:4465–4468

    Article  CAS  Google Scholar 

  10. Wang L, Yang W, Yi FY, Wang H, **e Z, Tang J, Sun ZM (2013) Chem Commun 49:7911–7913

    Article  CAS  Google Scholar 

  11. Sharma S, Singh SK, Pandey DS (2008) Inorg Chem 47:1179–1189

    Article  CAS  Google Scholar 

  12. Hissler M, Connick WB, Geiger DK, MaGarrah JE, Lipa D, Lachicotte RJ, Eisenberg R (2000) Inorg Chem 39:447–457

    Article  CAS  Google Scholar 

  13. Whittle CE, Weinstein JA, George MW, Schanze KS (2001) Inorg Chem 40:4053–4062

    Article  CAS  Google Scholar 

  14. Lee SH, Chan CTL, Wong KMC, Lam WH, Kwok WM, Yam VWW (2014) J Am Chem Soc 136:10041–10052

    Article  CAS  Google Scholar 

  15. Castellano FN, Pomestchenko IE, Shikhova E, Hua F, Muro ML, Rajapakse N (2006) Coord Chem Rev 250:1819–1828

    Article  CAS  Google Scholar 

  16. Bin XZ, Li E, Chen ZH, Chen ZN (2012) J Mater Chem 22:11427–11441

    Article  Google Scholar 

  17. Zhang X, Wang JY, Ni J, Zhang LY, Chen ZN (2012) Inorg Chem 51:5569–5579

    Article  CAS  Google Scholar 

  18. Ziessel R, Stroh C (2004) Tetrahedron Lett 45:4051–4055

    Article  CAS  Google Scholar 

  19. Suzuki K, Kobayashi A, Kaneko S, Takehira K, Yoshihara T, Ishida H, Shiina Y, Oishi S, Tobita S (2009) Phys Chem Chem Phys 11:9850–9860

    Article  CAS  Google Scholar 

  20. Resendiz MJE, Noveron JC, Disteldorf H, Fischer S, Stang PJ (2004) Org Lett 4:651–653

    Article  Google Scholar 

  21. Shiotsuka M, Kondo H, Inomata T, Sako K, Masuda H (2012) Chem Lett 41:1417–1419

    Article  CAS  Google Scholar 

  22. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Zelewsky AV (1988) Coord Chem Rev 84:85–277

    Article  CAS  Google Scholar 

  23. Ni J, Wu YH, Zhang X, Li B, Zhang LY, Chen ZN (2009) Inorg Chem 48:10202–10210

    Article  CAS  Google Scholar 

  24. Ni J, Zhang X, Wu YH, Zhang LY, Chen ZN (2011) Chem Eur J 17:1171–1183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 26410070 from Japan Society for the Promotion of Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michito Shiotsuka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiotsuka, M., Ueno, Y., Asano, D. et al. Synthesis and photophysical characterization of ruthenium(II) and platinum(II) complexes with bis-pyridylethynyl-phenanthroline ligands as a metalloligand. Transition Met Chem 40, 673–679 (2015). https://doi.org/10.1007/s11243-015-9961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9961-y

Keywords

Navigation