Log in

Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in purslane (Portulaca oleracea L.): an important medicinal plant

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Portulaca oleracea is an important medicinal plant, which is a source of pharmacologically active molecules such as β-Carotene, ascorbic acid, and Omega-3 fatty acids. The present research focuses on the development of an efficient protocol for micropropagation and Agrobacterium-mediated genetic transformation of P. oleracea. Callus induction, somatic embryogenesis, and plant regeneration from stem and leaf explants were investigated at various concentrations of kinetin (Kin) and 6-Benzylaminopurine (BAP) alone or in combination with indole-3-acetic acid, 1-Naphthaleneacetic acid and 2,4-Dichlorophenoxyacetic acid (2,4-D). Direct differentiation of somatic embryos from leaf explants occurred on the MS medium supplemented with 1.5 mg/L BAP under dark conditions. The embryos were transferred to the same medium without growth regulators under 16 h light/8 h dark cycles. In this medium, germinated somatic embryos rapidly developed into healthy plantlets with shoots and roots. Several parameters such as pre-culture of explants, co-cultivation period, wounding of explants, type of explants and bacterial strains were studied to optimize transformation efficiency. Different kanamycin concentrations were assessed for the selection of transgenic plants. Agrobacterium tumefaciens strains LBA4404 and GV3101, harbouring the GUS gene on pBI121 binary vector, were used for plant transformation and strain LBA4404 was found to be more efficient. The results indicated that use of leaf as explant, pre-culture of explants for 7 days, co-cultivation period for 4 days at 25 ± 2 °C and wounding of leaf explants produced the best transformation results. Expression, integration and inheritance of GUS reporter gene were confirmed by histochemical and molecular analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

AS:

Acetosyringone

BAP:

6-Benzylaminopurine

CaMV35S:

Cauliflower mosaic virus 35S

Cx:

Cefotaxime

IAA:

Indole-3-acetic acid

Kin:

Kinetin

Km:

Kanamycin

MS:

Murashige and Skoog

NAA:

1-Naphthaleneacetic acid

X-Gluc:

5-Bromo-4-chloro-3-indolyl β-D-glucuronide

References

  • Alabadí D, Blázquez MA (2009) Molecular interactions between light and hormone signaling to control plant growth. Plant Mol Biol 69(4):409

    Article  Google Scholar 

  • An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79(2):568–570

    Article  CAS  Google Scholar 

  • Azad M, Yokota S, Begum F, Yoshizawa N (2009) Plant regeneration through somatic embryogenesis of a medicinal plant, Phellodendron amurense Rupr. In Vitro Cell Dev Biol 45(4):441–449

    Article  Google Scholar 

  • Bakhshaie M, Babalar M, Mirmasoumi M, Khalighi A (2010) Somatic embryogenesis and plant regeneration of Lilium ledebourii (Baker) Boiss., an endangered species. Plant Cell Tissue Organ Cult 102(2):229–235. https://doi.org/10.1007/s11240-010-9726-4

    Article  CAS  Google Scholar 

  • Chandore A, Nimbalkar M, Gurav R, Bapat V, Yadav S (2010) A protocol for multiplication and restoration of Ceropegia fantastica Sedgw.: a critically endangered plant species. Curr Sci 2010:1593–1596

    Google Scholar 

  • Chée RP, Cantliffe DJ (1989) Inhibition of somatic embryogenesis in response to 2,3,5-triiodobenzoic acid and 2,4-dichlorophenoxyacetic acid in Ipomoea batatas (L.) Lam. cultured in vitro. J Plant Physiol 135(4):398–403. https://doi.org/10.1016/S0176-1617(89)80094-X

    Article  Google Scholar 

  • Cheng ZJ, Zhu SS, Gao XQ, Zhang XS (2010) Cytokinin and auxin regulates WUS induction and inflorescence regeneration in vitro in Arabidopsis. Plant Cell Rep 29(8):927–933. https://doi.org/10.1007/s00299-010-0879-8

    Article  CAS  PubMed  Google Scholar 

  • Chitra Devi B, Narmathabai V (2011) Somatic embryogenesis in the medicinal legume Desmodium motorium (Houtt.) Merr. Plant Cell Tissue Organ Cult 106(3):409–418. https://doi.org/10.1007/s11240-011-9937-3

    Article  CAS  Google Scholar 

  • Chung J-P, Huang C-Y, Dai T-E (2010) Spectral effects on embryogenesis and plantlet growth of Oncidium ‘Gower Ramsey’. Sci Hortic 124(4):511–516

    Article  CAS  Google Scholar 

  • Collado R, Bermúdez-Caraballoso I, García L, Veitía N, Torres D, Romero C, Martirena-Ramírez A, Angenon G (2015) Agrobacterium-mediated transformation of Phaseolus vulgaris L. using indirect organogenesis. Sci Hortic 195:89–100

    Article  CAS  Google Scholar 

  • Dai H, Li W, Han G, Yang Y, Ma Y, Li H, Zhang Z (2013) Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple. Sci Hortic 164:202–208

    Article  CAS  Google Scholar 

  • Delfan-Hosseini S, Nayebzadeh K, Mirmoghtadaie L, Kavosi M, Hosseini SM (2017) Effect of extraction process on composition, oxidative stability and rheological properties of purslane seed oil. Food Chem 222:61–66

    Article  CAS  Google Scholar 

  • Deo PC, Tyagi AP, Taylor M, Harding RM, Becker DK (2010) Factors affecting somatic embryogenesis and transformation in modern plant breeding. S Pac J Nat Appl Sci 28(1):27–40

    Article  Google Scholar 

  • Dhar U, Joshi M (2005) Efficient plant regeneration protocol through callus for Saussurea obvallata (DC.) Edgew.(Asteraceae): effect of explant type, age and plant growth regulators. Plant Cell Rep 24(4):195–200

    Article  CAS  Google Scholar 

  • Dibax R, Eisfeld CDL, Cuquel FL, Koehler H, Quoirin M (2005) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Sci Agricola 62(4):406–412

    Article  Google Scholar 

  • Dutt M, Grosser J (2009) Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell Tissue Organ Cult 98(3):331–340

    Article  CAS  Google Scholar 

  • Farhadi N, Panahandeh J, Azar AM, Salte SA (2017) Effects of explant type, growth regulators and light intensity on callus induction and plant regeneration in four ecotypes of Persian shallot (Allium hirtifolium). Sci Hortic 218:80–86

    Article  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74(3):201–228

    Article  CAS  Google Scholar 

  • Filippov M, Miroshnichenko D, Vernikovskaya D, Dolgov S (2006) The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat. Plant Cell Tissue Organ Cult 84(2):213–222. https://doi.org/10.1007/s11240-005-9026-6

    Article  CAS  Google Scholar 

  • Fujimura T, Komamine A (1979) Involvement of endogenous auxin in somatic embryogenesis in a carrot cell suspension culture. Z Pflanzenphysiol 95(1):13–19. https://doi.org/10.1016/S0044-328X(79)80023-9

    Article  CAS  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43(1):27–47

    Article  CAS  Google Scholar 

  • Gomes F, Simoes M, Lopes ML, Canhoto JM (2010) Effect of plant growth regulators and genotype on the micropropagation of adult trees of Arbutus unedo L.(strawberry tree). New Biotechnol 27(6):882–892

    Article  CAS  Google Scholar 

  • Gutiérrez MA, Luth D, Moore GA (1997) Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 16(11):745–753. https://doi.org/10.1007/s002990050313

    Article  Google Scholar 

  • Hooley R (1999) A role for G proteins in plant hormone signalling? Plant Physiol Biochem 37(5):393–402. https://doi.org/10.1016/S0981-9428(99)80045-X

    Article  CAS  Google Scholar 

  • Huang P, Xu M, **a L, Qing Z, Tang Q, Liu W, Zeng J (2017) Establishment of an efficient Agrobacterium-mediated genetic transformation method in Macleaya cordata. Sci Hortic 226:302–306

    Article  CAS  Google Scholar 

  • Japelaghi RH, Haddad R, Garoosi G-A (2011) Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Mol Biotechnol 49(2):129–137

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5(4):387–405

    Article  CAS  Google Scholar 

  • Jha TB, Mukherjee P, Datta MM (2007) Somatic embryogenesis in Jatropha curcas Linn., an important biofuel plant. Plant Biotechnol Rep 1(3):135–140. https://doi.org/10.1007/s11816-007-0027-2

    Article  Google Scholar 

  • Jiang H, Doerge R, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35(2):219–236

    Article  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47(2–3):91–110

    Article  Google Scholar 

  • Khan S, Fahim N, Singh P, Rahman LU (2015) Agrobacterium tumefaciens mediated genetic transformation of Ocimum gratissimum: a medicinally important crop. Ind Crops Prod 71:138–146

    Article  CAS  Google Scholar 

  • Kim HS, Zhang G, Juvik JA, Widholm JM (2010) Miscanthus × giganteus plant regeneration: effect of callus types, ages and culture methods on regeneration competence. Gcb Bioenergy 2(4):192–200

    Google Scholar 

  • Lu M-C (2005) Micropropagation of Vitis thunbergii Sieb. et Zucc., a medicinal herb, through high-frequency shoot tip culture. Sci Hortic 107(1):64–69. https://doi.org/10.1016/j.scienta.2005.05.014

    Article  CAS  Google Scholar 

  • Lu G, Zou Q, Guo D, Zhuang X, Yu X, **ang X, Cao J (2007) Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis. Plant Cell Rep 26(9):1585–1593

    Article  CAS  Google Scholar 

  • Michniewicz M, Brewer PB, Friml J (2007) Polar auxin transport and asymmetric auxin distribution. Arabidopsis Book 5:e0108

    PubMed  PubMed Central  Google Scholar 

  • Moghadam YA, Piri K, Bahramnejad B, Habibi P (2011) Hairy roots induction in purslane (Portulaca oleracea Linn.) using Agrobacterium rhizogenes. Plant Med 77(12):PB24

    Google Scholar 

  • Mohan C, Naresh B, Kumar BK, Reddy V, Manjula P, Keerthi B, Sreekanth D, Manzelat SF, Cherku PD (2017) Micropropagation studies and phytochemical analysis of the endangered tree Commiphora wightii. J Appl Res Med Aromat Plants 6:70–79. https://doi.org/10.1016/j.jarmap.2017.02.004

    Article  Google Scholar 

  • Mukeshimana G, Ma Y, Walworth AE, Song G-Q, Kelly JD (2013) Factors influencing regeneration and Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris L.). Plant Biotechnol Rep 7(1):59–70. https://doi.org/10.1007/s11816-012-0237-0

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Naeem F, Khan SH (2013) Purslane (Portulaca oleracea L.) as phytogenic substance—a review. J Herbs Spices Med Plants 19(3):216–232

    Article  CAS  Google Scholar 

  • Nato A, Fresneau C, Moursalimova N, De Buyser J, Lavergne D, Henry Y (2000) Expression of auxin and light-regulated arrestin-like proteins, G proteins and nucleoside diphosphate kinase during induction and development of wheat somatic embryos. Plant Physiol Biochem 38(6):483–490. https://doi.org/10.1016/S0981-9428(00)00769-5

    Article  CAS  Google Scholar 

  • Parimalan R, Venugopalan A, Giridhar P, Ravishankar G (2011) Somatic embryogenesis and Agrobacterium-mediated transformation in Bixa orellana L. Plant Cell Tissue Organ Cult 105(3):317–328

    Article  CAS  Google Scholar 

  • Petropoulos S, Karkanis A, Martins N, Ferreira IC (2016) Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends Food Sci Technol 55:1–10

    Article  CAS  Google Scholar 

  • Pozueta-Romero J, Houlné G, Cañas L, Schantz R, Chamarro J (2001) Enhanced regeneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cell Tissue Organ Culture 67(2):173–180

    Article  CAS  Google Scholar 

  • Prakash M, Gurumurthi K (2010) Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell Tissue Organ Cult 100(1):13

    Article  CAS  Google Scholar 

  • Quiala E, Cañal M-J, Meijón M, Rodríguez R, Chávez M, Valledor L, de Feria M, Barbón R (2012) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tissue Organ Cult 109(2):223–234. https://doi.org/10.1007/s11240-011-0088-3

    Article  CAS  Google Scholar 

  • Ramage CM, Williams RR (2004) Cytokinin-induced abnormal shoot organogenesis is associated with elevated Knotted1-type homeobox gene expression in tobacco. Plant cell Rep 22(12):919–924

    Article  CAS  Google Scholar 

  • Rossin CB, Rey MEC (2011) Effect of explant source and auxins on somatic embryogenesis of selected cassava (Manihot esculenta Crantz) cultivars. S Afr J Bot 77(1):59–65. https://doi.org/10.1016/j.sajb.2010.05.007

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18(2):91–120. https://doi.org/10.1016/S0734-9750(99)00026-9

    Article  CAS  PubMed  Google Scholar 

  • Safdari Y, Kazemitabar S (2009) Plant tissue culture study on two different races of purslane (Portulaca oleracea L.). Afr J Biotechnol 8(21):5906–5912

    Article  CAS  Google Scholar 

  • Sahai A, Shahzad A, Sharma S (2010) Histology of organogenesis and somatic embryogenesis in excised root cultures of an endangered species Tylophora indica (Asclepiadaceae). Aust J Bot 58(3):198–205

    Article  Google Scholar 

  • Saini R, Jaiwal P (2007) Agrobacterium tumefaciens-mediated transformation of blackgram: an assessment of factors influencing the efficiency of uidA gene transfer. Biol Plant 51(1):69–74

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, Cold Spring Laboratory. Cold Spring Harbor, NY. VIII. Appendix A. pBIND Vector Sequence (continued) A. pBIND Vector Sequence (continued) B. pBIND Vector Restriction Sites Enzyme# of Sites. Location Dra I 4(1857):4877

  • Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari S (2011a) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell, Tissue Organ Cult 105(1):93–104

    Article  CAS  Google Scholar 

  • Sharma MM, Singh A, Verma RN, Ali DZ, Batra A (2011b) Influence of PGRS for the in vitro plant regeneration and flowering in Portulaca oleracea L.: a medicinal and ornamental plant. Int J Bot 7(1):103–107

    Article  Google Scholar 

  • Shekhawat MS, Kannan N, Manokari M (2015) Propagation OF Portulaca oleracea L. in liquid medium: implications of plant growth regulators in culture. J Microbiol Biotechnol Food Sci 4(4):332

    Article  CAS  Google Scholar 

  • Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4(6):575–603

    Article  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318(6047):624

    Article  Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59(3):448–460

    Article  CAS  Google Scholar 

  • Su Y-H, Liu Y-B, Zhang X-S (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4(4):616–625. https://doi.org/10.1093/mp/ssr007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su YH, Liu YB, Bai B, Zhang XS (2015) Establishment of embryonic shoot–root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci 5:792

    Article  Google Scholar 

  • Suzuki RM, Kerbauy GB, Zaffari GR (2004) Endogenous hormonal levels and growth of dark-incubated shoots of Catasetum fimbriatum. J Plant Physiol 161(8):929–935

    Article  CAS  Google Scholar 

  • Swamy MK, Mohanty SK, Anuradha M (2014) The effect of plant growth regulators and natural supplements on in vitro propagation of Pogostemon cablin Benth. J Crop Sci Biotechnol 17(2):71–78

    Article  Google Scholar 

  • Thorpe TA (2007) History of plant tissue culture. Mol Biotechnol 37(2):169–180. https://doi.org/10.1007/s12033-007-0031-3

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Reed JW (2001) Molecular links between light and auxin signaling pathways. J Plant Growth Regul 20(3):274–280. https://doi.org/10.1007/s003440010022

    Article  CAS  Google Scholar 

  • Tiwari V, Singh BD, Tiwari KN (1998) Shoot regeneration and somatic embryogenesis from different explants of Brahmi [Bacopa monniera (L.) Wettst.]. Plant Cell Rep 17(6–7):538–543

    Article  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA 99(16):10435–10440

    Article  CAS  Google Scholar 

  • Uddin MK, Juraimi AS, Hossain MS, Nahar MAU, Ali ME, Rahman M (2014) Purslane weed (Portulaca oleracea): a prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. Sci World J 2014:1–6. https://doi.org/10.1155/2014/951019

    Article  CAS  Google Scholar 

  • Viktor Nørgaard J, Krogstrup P (1991) Cytokinin induced somatic embryogenesis from immature embryos of Abies nordmanniana Lk. Plant Cell Rep 9(9):509–513. https://doi.org/10.1007/bf00232107

    Article  PubMed  Google Scholar 

  • Witbooi H, Okem A, Makunga N, Kambizi L (2017) Micropropagation and secondary metabolites in Agathosma betulina (Berg.). S Afr J Bot 111:283–290

    Article  CAS  Google Scholar 

  • Yan M-M, Xu C, Kim C-H, Um Y-C, Bah AA, Guo D-P (2009) Effects of explant type, culture media and growth regulators on callus induction and plant regeneration of Chinese jiaotou (Allium chinense). Sci Hortic 123(1):124–128. https://doi.org/10.1016/j.scienta.2009.07.021

    Article  CAS  Google Scholar 

  • Yang Y, Bao M, Liu G (2010) Factors affecting Agrobacterium-mediated genetic transformation of embryogenic callus of Parthenocissus tricuspidata Planch. Plant Cell Tissue Organ Cult 102(3):373–380

    Article  CAS  Google Scholar 

  • Zelená E (2000) The effect of light on metabolism of IAA in maize seedlings. Plant Growth Regul 30(1):23–29

    Article  Google Scholar 

  • Zhang B-H, Feng R, Liu F, Zhou D-Y, Wang Q-L (2001) Direct somatic embryogenesis and plant regeneration from cotton (Gossypium hirsutum L.) explants. Israel J Plant Sci 49(3):193–196

    Article  CAS  Google Scholar 

  • Zhou Y-X, **n H-L, Rahman K, Wang S-J, Peng C, Zhang H (2015) Portulaca oleracea L.: a review of phytochemistry and pharmacological effects. BioMed Res Int 2015:1–11. https://doi.org/10.1155/2015/925631

    Article  CAS  Google Scholar 

  • Ziemienowicz A (2014) Agrobacterium-mediated plant transformation: factors, applications and recent advances. Biocatal Agric Biotechnol 3(4):95–102

    Article  Google Scholar 

Download references

Acknowledgements

This paper is part of the PhD dissertation of the first author. These experiments were conducted at the Molecular Biology Laboratory and Tissue Culture Laboratory of Faculty of Agricultural Sciences and Natural Resources, Imam Khomeini International University, Qazvin, Iran. The authors would like to thank PhD Students; Reza Heidari Japelaghi and Meysam Bastami for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

BS: Performance of experiments, collection and analysis of data and preparation of manuscript; RH: Corresponding author, chief scientist, assistance to data collection and analysis; financial supports, experimental design. MB: Project academic advisor, preparation of plant materials and assistance to experimental design.

Corresponding author

Correspondence to Raheem Haddad.

Additional information

Communicated by Danny Geelen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 210 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedaghati, B., Haddad, R. & Bandehpour, M. Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in purslane (Portulaca oleracea L.): an important medicinal plant. Plant Cell Tiss Organ Cult 136, 231–245 (2019). https://doi.org/10.1007/s11240-018-1509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1509-3

Keywords

Navigation