Log in

The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plant-specific NAC (NAM/ATAF/CUC) transcription factors play crucial roles in diverse development processes as well as biotic and abiotic stress responses. Nevertheless, to date only few reports regarding stress-related NAC genes are available in tomato. In this study, we isolated an abiotic stress-responsive NAC gene from tomato, here designated as SlNAC11. Expression analysis revealed that SlNAC11 was induced significantly by dehydration, cold, and heat. The functions of SlNAC11 in abiotic stress were further detected on SlNAC11-RNAi transgenic tomato plants. The results showed that SlNAC11-RNAi plants became less tolerant to drought and salt stress, which were demonstrated by lower level of chlorophyll content and seed germination rate, and higher level of MDA as compared to WT plants under stress conditions. Furthermore, transgenic seedlings exhibited less hypersensitive to ABA, demonstrated by longer hypocotyl and root as compared to WT plants. These results show that SlNAC11 functions as a stress-responsive transcription factor depicting positive response to abiotic stress tolerance and may hold promise for improving stress tolerance in transgenic tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-Amino cyclopropane-1carboxylic acid

Chl:

Chlorophyll

GA3:

Gibberellin acid

IAA:

Indole-3-acetic acid

MeJA:

Methyl jasmonate

MDA:

Malonaldehyde

MS:

Murashige and Skoog

ORF:

Open reading frame

FW:

Fresh weight

DW:

Dry weight

RT-PCR:

Reverse transcription-polymerase chain reaction

WT:

Wild-type

TF:

Transcription factor

TFs:

Transcription factors

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9(6):841–857. doi:10.1105/tpc.9.6.841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Abdallat AM, Ali-Sheikh-Omar MA, Alnemer LM (2015) Overexpression of two ATNAC3-related genes improves drought and salt tolerance in tomato (Solanum lycopersicum L.). Plant Cell Tiss Org 120(3):989–1001. doi:10.1007/s11240-014-0652-8

    Article  CAS  Google Scholar 

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53(377):2039–2055

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488. doi:10.1007/s11103-008-9435-0

    Article  CAS  PubMed  Google Scholar 

  • Benedetti CE, Costa CL, Turcinelli SR, Arruda P (1998) Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the Coi1 mutant of Arabidopsis. Plant Physiol 116(3):1037–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136(5):823–832. doi:10.1242/dev.031625

    Article  CAS  PubMed  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12(22):8711–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird CR, Smith CJ, Ray JA, Moureau P, Bevan MW, Bird AS, Hughes S, Morris PC, Grierson D, Schuch W (1988) The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol Biol 11(5):651–662. doi:10.1007/BF00017465

    Article  CAS  PubMed  Google Scholar 

  • Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322(5909):1835–1839. doi:10.1126/science.1166168

    Article  CAS  PubMed  Google Scholar 

  • Chai MF, Bellizzi M, Wan CX, Cui ZF, Li YB, Wang GL (2015) The NAC transcription factor OsSWN1 regulates secondary cell wall development in Oryza sativa. J Plant Biol 58(1):44–51. doi:10.1007/s12374-014-0400-y

    Article  CAS  Google Scholar 

  • Chen GP, Hackett R, Walker D, Taylor A, Lin ZF, Grierson D (2004) Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136(1):2641–2651. doi:10.1104/pp.104.041608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson JA, Dennis ES, Llewellyn DJ, Wilson IW (2010) ATAF NAC transcription factors: regulators of plant stress signaling. Plant Signal Behav 5(4):428–432

    Article  CAS  PubMed  Google Scholar 

  • Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Sci Hortic 78(1–4):83–125

    CAS  Google Scholar 

  • Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43(5):745–757. doi:10.1111/j.1365-313X.2005.02488.x

    Article  CAS  PubMed  Google Scholar 

  • Dong TT, Hu ZL, Deng L, Wang Y, Zhu MK, Zhang JL, Chen GP (2013) A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol 163(2):1026–1036. doi:10.1104/pp.113.224436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131. doi:10.1186/1471-2229-8-131

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39(6):863–876. doi:10.1111/j.1365-313X.2004.02171.x

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180. doi:10.1105/tpc.019158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh HH, Sloan J, Malinowski R, Fleming A (2014) Variable expansin expression in Arabidopsis leads to different growth responses. J Plant Physiol 171(3–4):329–339. doi:10.1016/j.jplph.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736. doi:10.1016/j.jplph.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  • Guo YF, Gan SS (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46(4):601–612. doi:10.1111/j.1365-313X.2006.02723.x

    Article  CAS  PubMed  Google Scholar 

  • Guo JJ, Wang JB, ** L, Huang WD, Liang JS, Chen JG (2009) RACK1 is a negative regulator of ABA responses in Arabidopsis. J Exp Bot 60(13):3819–3833. doi:10.1093/jxb/erp221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Q, Zhang J, Li H, Luo Z, Ziaf K, Ouyang B, Wang T, Ye Z (2012) Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum. Mol Biol Rep 39(2):1713–1720. doi:10.1007/s11033-011-0911-2

    Article  CAS  PubMed  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44(6):903–916. doi:10.1111/j.1365-313X.2005.02575.x

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, **ao B, Li X, Zhang Q, **ong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103(35):12987–12992. doi:10.1073/pnas.0604882103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein MM, Balbaa LK, Gaballah MS (2007) Salicylic acid and salinity effects on growth of maize plants. Res J Agric Biol Sci 3(4):321–328

    CAS  Google Scholar 

  • Hwang SJ, Lee MY, Sivanesan I, Jeong BR (2008) Growth control of kalanchoe cultivars Rako and Gold Strike by application of paclobutrazol and uniconazole as soaking treatment of cuttings. Afr J Biotechnol 7(22):4212–4218

    CAS  Google Scholar 

  • ** HX, Huang F, Cheng H, Song HN, Yu DY (2013a) Overexpression of the GmNAC2 gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco. Plant Mol Biol Rep 31(2):435–442. doi:10.1007/s11105-012-0514-7

  • ** HX, Xu GL, Meng QC, Huang F, Yu DY (2013b) GmNAC5, a NAC transcription factor, is a transient response regulator induced by abiotic stress in soybean. Sci World J 2013:768972. doi:10.1155/2013/768972

  • Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5(15):159–163

    Google Scholar 

  • Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262(6):1047–1051. doi:10.1007/Pl00008647

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Park BO, Yoo JH, Jung MS, Lee SM, Han HJ, Kim KE, Kim SH, Lim CO, Yun DJ, Lee SY, Chung WS (2007) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J Biol Chem 282(50):36292–36302. doi:10.1074/jbc.M705217200

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59. doi:10.1146/annurev-genet-110410-132507

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18(4):263–276. doi:10.1093/dnares/dsr015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim MY, Pulla RK, Park JM, Harn CH, Jeong BR (2012) Over-expression of L-gulono-γ-lactone oxidase (GLOase) gene leads to ascorbate accumulation with enhanced abiotic stress tolerance in tomato. In Vitro Cell Dev Biol Pl 48(5):453–461. doi:10.1007/s11627-012-9461-0

    Article  CAS  Google Scholar 

  • Liu X, Hong L, Li XY, Yao Y, Hu B, Li L (2011) Improved drought and salt tolerance in transgenic arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotechnol Biochem 75(3):443–450. doi:10.1271/Bbb.100614

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Ouyang ZG, Zhang YF, Li XH, Hong YB, Huang L, Liu SX, Zhang HJ, Li DY, Song FM (2014) Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. PLoS One 9(7):e102067. doi:10.1371/journal.pone.0102067

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63(2):289–305. doi:10.1007/s11103-006-9089-8

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Ying S, Zhang DF, Shi YS, Song YC, Wang TY, Li Y (2012) A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep 31(9):1701–1711. doi:10.1007/s00299-012-1284-2

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q (2014) Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351. doi:10.1186/s12870-014-0351-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Malamy JE, Benfey PN (1997) Down and out in Arabidopsis: The formation of lateral roots. Trends Plant Sci 2(10):390–396. doi:10.1016/S1360-1385(97)90054-6

    Article  Google Scholar 

  • Mao X, Chen S, Li A, Zhai C, **g R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9(1):e84359. doi:10.1371/journal.pone.0084359

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19(1):270–280. doi:10.1105/tpc.106.047043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101(16):6309–6314. doi:10.1073/pnas.0401572101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630. doi:10.1111/j.1365-313X.2007.03168.x

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95. doi:10.1104/pp.108.129791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neamatollahi E, Bannayan M, Ghanbari A, Haydari M, Ahmadian A (2009) Does hydro and osmo-priming improve fennel (Foeniculum vulgare) seeds germination and seedlings growth? Not Bot Horti Agrobo 37(2):190–194

    CAS  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekee** gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914. doi:10.1093/jxb/eri285

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY, Tsutsumi N (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80(2):135–139

    Article  CAS  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87. doi:10.1016/j.tplants.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31(2):349–360. doi:10.1007/s00299-011-1170-3

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro GL, Marques CS, Costa MDBL, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444(1–2):10–23. doi:10.1016/j.gene.2009.05.012

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381. doi:10.1016/j.tplants.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52(9):1569–1582. doi:10.1093/pcp/pcr106

    Article  CAS  PubMed  Google Scholar 

  • Ratnakaran N (2014) Identification of the role of Arabidopsis ATAF-type NAC transcription factors in plant stress and development. Dissertation, Georg-August University

  • Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Aoki K, Egholm M, Knight J, Bogden R, Li CB, Shuang Y, Xu X, Pan SK, Cheng SF, Liu X, Ren YY, Wang J, Albiero A, Dal Pero F, Todesco S, Van Eck J, Buels RM, Bombarely A, Gosselin JR, Huang MY, Leto JA, Menda N, Strickler S, Mao LY, Gao S, Tecle IY, York T, Zheng Y, Vrebalov JT, Lee J, Zhong SL, Mueller LA, Stiekema WJ, Ribeca P, Alioto T, Yang WC, Huang SW, Du YC, Zhang ZH, Gao JC, Guo YM, Wang XX, Li Y, He J, Li CY, Cheng ZK, Zuo JR, Ren JF, Zhao JH, Yan LH, Jiang HL, Wang B, Li HS, Li ZJ, Fu FY, Chen BT, Han B, Feng Q, Fan DL, Wang Y, Ling HQ, Xue YBA, Ware D, McCombie WR, Lippman ZB, Chia JM, Jiang K, Pasternak S, Gelley L, Kramer M, Anderson LK, Chang SB, Royer SM, Shearer LA, Stack SM, Rose JKC, Xu YM, Eannetta N, Matas AJ, McQuinn R, Tanksley SD, Camara F, Guigo R, Rombauts S, Fawcett J, Van de Peer Y, Zamir D, Liang CB, Spannagl M, Gundlach H, Bruggmann R, Mayer K, Jia ZQ, Zhang JH, Ye ZBA, Bishop GJ, Butcher S, Lopez-Cobollo R, Buchan D, Filippis I, Abbott J, Dixit R, Singh M, Singh A, Pal JK, Pandit A, Singh PK, Mahato AK, Dogra V, Gaikwad K, Sharma TR, Mohapatra T, Singh NK, Causse M, Rothan C, Schiex T, Noirot C, Bellec A, Klopp C, Delalande C, Berges H, Mariette J, Frasse P, Vautrin S, Zouine M, Latche A, Rousseau C, Regad F, Pech JC, Philippot M, Bouzayen M, Pericard P, Osorio S, del Carmen AF, Monforte A, Granell A, Fernandez-Munoz R, Conte M, Lichtenstein G, Carrari F, De Bellis G, Fuligni F, Peano C, Grandillo S, Termolino P, Pietrella M, Fantini E, Falcone G, Fiore A, Giuliano G, Lopez L, Facella P, Perrotta G, Daddiego L, Bryan G, Orozco M, Pastor X, Torrents D, van Schriek KNVMGM, Feron RMC, van Oeveren J, de Heer P, daPonte L, Jacobs-Oomen S, Cariaso M, Prins M, van Eijk MJT, Janssen A, van Haaren MJJ, Jo SH, Kim J, Kwon SY, Kim S, Koo DH, Lee S, Hur CG, Clouser C, Rico A, Hallab A, Gebhardt C, Klee K, Jocker A, Warfsmann J, Gobel U, Kawamura S, Yano K, Sherman JD, Fukuoka H, Negoro S, Bhutty S, Chowdhury P, Chattopadhyay D, Datema E, Smit S, Schijlen EWM, van de Belt J, van Haarst JC, Peters SA, van Staveren MJ, Henkens MHC, Mooyman PJW, Hesselink T, van Ham RCHJ, Jiang GY, Droege M, Choi D, Kang BC, Kim BD, Park M, Kim S, Yeom SI, Lee YH, Choi YD, Li GC, Gao JW, Liu YS, Huang SX, Fernandez-Pedrosa V, Collado C, Zuniga S, Wang GP, Cade R, Dietrich RA, Rogers J, Knapp S, Fei ZJ, White RA, Thannhauser TW, Giovannoni JJ, Botella MA, Gilbert L, Gonzalez R, Goicoechea JL, Yu Y, Kudrna D, Collura K, Wissotski M, Wing R, Schoof H, Meyers BC, Gurazada AB, Green PJ, Mathur S, Vyas S, Solanke AU, Kumar R, Gupta V, Sharma AK, Khurana P, Khurana JP, Tyagi AK, Dalmay T, Mohorianu I, Walts B, Chamala S, Barbazuk WB, Li JP, Guo H, Lee TH, Wang YP, Zhang D, Paterson AH, Wang XY, Tang HB, Barone A, Chiusano ML, Ercolano MR, D’Agostino N, Di Filippo M, Traini A, Sanseverino W, Frusciante L, Seymour GB, Elharam M, Fu Y, Hua A, Kenton S, Lewis J, Lin SP, Najar F, Lai HS, Qin BF, Qu CM, Shi RH, White D, White J, **ng YB, Yang KQ, Yi J, Yao ZY, Zhou LP, Roe BA, Vezzi A, D’Angelo M, Zimbello R, Schiavon R, Caniato E, Rigobello C, Campagna D, Vitulo N, Valle G, Nelson DR, De Paoli E, Szinay D, de Jong HH, Bai YL, Visser RGF, Lankhorst RMK, Beasley H, McLaren K, Nicholson C, Riddle C, Gianese G, Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641. doi:10.1038/nature11119

    Article  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97(21):11655–11660. doi:10.1073/pnas.97.21.11655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17(1):311–325. doi:10.1105/tpc.104.027235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Yin YB, Chen F, Xu Y, Dixon RA (2009) A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenerg Res 2(4):217–232. doi:10.1007/s12155-009-9047-9

    Article  Google Scholar 

  • Sivanesan I, Song JY, Hwang SJ, Jeong BR (2011) Micropropagation of Cotoneaster wilsonii Nakai-a rare endemic ornamental plant. Plant Cell Tiss Org 105(1):55–63. doi:10.1007/s11240-010-9841-2

    Article  Google Scholar 

  • Souer E, vanHouwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170. doi:10.1016/S0092-8674(00)81093-4

    Article  CAS  PubMed  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER, Grusak MA, Fett JP (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230(5):985–1002. doi:10.1007/s00425-009-1000-9

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128(7):1127–1135

    CAS  PubMed  Google Scholar 

  • Tang Y, Liu M, Gao S, Zhang Z, Zhao X, Zhao C, Zhang F, Chen X (2012) Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant 144(3):210–224. doi:10.1111/j.1399-3054.2011.01539.x

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Zhang X, Liang B, Li S, Wu Z, Wang Q, Leng C, Dong J, Wang T (2010) Expression of baculovirus anti-apoptotic genes p35 and op-iap in cotton (Gossypium hirsutum L.) enhances tolerance to verticillium wilt. PLoS One 5(12):e14218. doi:10.1371/journal.pone.0014218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16(9):2481–2498. doi:10.1105/tpc.104.022699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Urbanczyk-Wochniak E, Ishiga T, Mysore KS, Bender CL (2008) Pathogenicity of Pseudomonas syringae pv. tomato on tomato seedlings: phenotypic and gene expression analyses of the virulence function of coronatine. Mol Plant Microbe Interact 21(4):383–395. doi:10.1094/MPMI-21-4-0383

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Rashotte AM, Dane F (2014) Citrullus colocynthis NAC transcription factors CcNAC1 and CcNAC2 are involved in light and auxin signaling. Plant Cell Rep 33(10):1673–1686. doi:10.1007/s00299-014-1646-z

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Guo X, Wang C, Ma J, Niu F, Zhang H, Yang B, Liang W, Han F, Jiang YQ (2015) Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death. Plant Mol Biol 87(4–5):395–411. doi:10.1007/s11103-015-0286-1

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, **e Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19(11):1279–1290. doi:10.1038/cr.2009.108

    Article  CAS  PubMed  Google Scholar 

  • **e Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14(23):3024–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang RC, Deng CT, Bo OY, Ye ZBA (2011) Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38(2):857–863. doi:10.1007/s11033-010-0177-0

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Hou YS, Zhao X, Lu WX, Li YL, Yang F, Tang SH, Luo KM (2015a) Identification and characterization of a wood-associated NAC domain transcription factor PtoVNS11 from Populus tomentosa Carr. Trees 29(4):1091–1101. doi:10.1007/s00468-015-1188-1

  • Yang X, Wang X, Ji L, Yi Z, Fu C, Ran J, Hu R, Zhou G (2015b) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34(6):943–958. doi:10.1007/s00299-015-1756-2

  • Yu XW, Peng H, Liu YM, Zhang Y, Shu YJ, Chen QJ, Shi SB, Ma L, Ma H, Zhang H (2014) CarNAC2, a novel NAC transcription factor in chickpea (Cicer arietinum L.), is associated with drought-response and various developmental processes in transgenic arabidopsis. J Plant Biol 57(1):55–66. doi:10.1007/s12374-013-0457-z

    Article  CAS  Google Scholar 

  • Zheng XN, Chen B, Lu GJ, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989. doi:10.1016/j.bbrc.2008.12.163

    Article  CAS  PubMed  Google Scholar 

  • Zhong RQ, Lee CH, Ye ZH (2010) Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant 3(6):1087–1103. doi:10.1093/mp/ssq062

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Chen G, Zhang J, Zhang Y, **e Q, Zhao Z, Pan Y, Hu Z (2014a) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep 33(11):1851–1863. doi:10.1007/s00299-014-1662-z

  • Zhu MK, Chen GP, Zhou S, Tu Y, Wang Y, Dong TT, Hu ZL (2014b) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55(1):119–135. doi:10.1093/pcp/pct162

  • Zhu MK, Hu ZL, Zhou S, Wang LL, Dong TT, Pan Y, Chen GP (2014c) Molecular characterization of six tissue-specific or stress-inducible genes of NAC transcription factor family in tomato (Solanum lycopersicum). J Plant Growth Regul 33(4):730–744. doi:10.1007/s00344-014-9420-6

Download references

Acknowledgements

The authors thank Prof Donald Grierson of BBSRC Research Group in Plant Gene Regulation, Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK for providing the AC++ (Ailsa Craig) seeds. We also thank all laboratory members for help, advice and discussion.

Author contributions

GPC and MKZ contributed to conceive and design the experiment. LLW performed the experiments, data analyses and wrote the manuscript. ZZG and JTH contributed regents and analysis tools. ZLH and GQ provided technical support in writing the manuscript. All of the authors read and approved the final manuscript.

Funding

This work was supported by National Natural Science Foundation of China (Nos. 30600044, 30871709, 31171968) and the Fundamental Research Funds for the Central Universities (No. 106112015CDJZR235504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo** Chen.

Ethics declarations

Conflict of interest

All authors have read and approved this version of the article, and due care has been taken to ensure the integrity of this work. All authors have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 220 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Hu, Z., Zhu, M. et al. The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell Tiss Organ Cult 129, 161–174 (2017). https://doi.org/10.1007/s11240-017-1167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1167-x

Keywords

Navigation