Log in

BpGH3.5, an early auxin-response gene, regulates root elongation in Betula platyphylla × Betula pendula

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The GH3 family is an important class of early auxin-response genes involved in the development of the hypocotyls and roots in Arabidopsis thaliana, but the role of this gene family in woody plants is poorly understood. In this study, we cloned a GH3-like gene from Betula platyphylla × Betula pendula (birch) named BpGH3.5 and produced transgenic birch lines that overexpressed either a sense or antisense version of the BpGH3.5 gene using Agrobacterium-mediated transformation. We found that both types of transgenic lines exhibited short primary and lateral roots in vitro, which was caused by a smaller sized root apical meristem with a fewer cells compared with the non-transgenic plant as observed in paraffin sections. The qRT-PCR results showed that the expression of genes associated with auxin and cytokinin metabolism and signaling changed in the transgenic lines. These results indicated that cytokinin and auxin crosstalk caused a small meristem, short-root phenotype in BpGH3.5 transgenic lines. In addition, transgenic sense and antisense BpGH3.5 lines showed reduced indole-3-acetic acid and N-1-napthylphthalamic-acid sensitivity. Taken as a whole, our results suggested that BpGH3.5 had a complex function and sophisticated mechanism of regulation in woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in sha** root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beemster GT, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–1526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blilou I et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507

    Article  CAS  PubMed  Google Scholar 

  • Casamitjana-Martínez E, Hofhuis HF, Xu J, Liu C-M, Heidstra R, Scheres B (2003) Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr Biol 13:1435–1441

    Article  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Cheng J-C, Seeley KA, Sung ZR (1995) RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol 107:365–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Y-J, Guo W-W, Yi H-L, Pang X-M, Deng X (2003) An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep 21:177–178

    Article  Google Scholar 

  • Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682

    Article  CAS  PubMed  Google Scholar 

  • Dello Ioio R, Linhares FS, Sabatini S (2008) Emerging role of cytokinin as a regulator of cellular differentiation. Curr Opin Plant Biol 11:23–27

    Article  CAS  PubMed  Google Scholar 

  • Devoghalaere F et al (2012) A genomics approach to understanding the role of auxin in apple (Malus × domestica) fruit size control. BMC Plant Biol 12:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dewitte W, Murray JA (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ (1999) Auxin-regulated genes and promoters. New Compr Biochem 33:423–460

    Article  CAS  Google Scholar 

  • Gutierrez C, Ramirez-Parra E, Castellano M, del Pozo JC (2002) G1 to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol 5:480–486

    Article  CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (1985) Rapid induction of selective transcription by auxins. Mol Cell Biol 5:1197–1203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Hsieh H-L, Okamoto H, Wang M, Ang L-H, Matsui M, Goodman H, Deng XW (2000) FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14:1958–1970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang H, Wang S, Jiang J, Liu G, Li H, Chen S, Xu H (2014) Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula. Physiol Plant 151:495–506

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Sheen J, Muller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    Article  CAS  PubMed  Google Scholar 

  • Inze D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105

    Article  CAS  PubMed  Google Scholar 

  • Ivanchenko MG, den Os D, Monshausen GB, Dubrovsky JG, Bednarova A, Krishnan N (2013) Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Ann Bot 112:1107–1116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jager SM, Maughan S, Dewitte W, Scofield S, Murray JA (2005) The developmental context of cell-cycle control in plants. Semin Cell Dev Biol 16:385–396

    Article  PubMed  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Stone JM (2007) Arabidopsis thaliana GH3.9 influences primary root growth. Planta 226:21–34

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H et al (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56

    Article  PubMed  Google Scholar 

  • Liu G, ** S, Liu X, Tan J, Yang X, Zhang X (2012) Overexpression of Arabidopsis cyclin D2;1 in cotton results in leaf curling and other plant architectural modifications. Plant Cell, Tissue Organ Cult 110:261–273

    Article  CAS  Google Scholar 

  • Menges M, Samland AK, Planchais S, Murray JA (2006) The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18:893–906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moubayidin L, Perilli S, Dello Ioio R, Di Mambro R, Costantino P, Sabatini S (2010) The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol 20:1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Muraro D, Byrne H, King J, Voss U, Kieber J, Bennett M (2011) The influence of cytokinin-auxin cross-regulation on cell-fate determination in Arabidopsis thaliana root development. J Theor Biol 283:152–167

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M (2001) DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25:213–221

    Article  CAS  PubMed  Google Scholar 

  • Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC, Innes RW (2007) The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol 144:1144–1156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okumura K et al (2013) GNOM/FEWER ROOTS is required for the establishment of an auxin response maximum for arabidopsis lateral root initiation. Plant Cell Physiol 54:406–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50:514–528

    Article  CAS  PubMed  Google Scholar 

  • Reddy S et al (2006) The auxin-inducible GH3 homologue Pp-GH3.16 is downregulated in Pinus pinaster root systems on ectomycorrhizal symbiosis establishment. New Phytol 170:391–400

    Article  CAS  PubMed  Google Scholar 

  • Roux C, Perrot-Rechenmann C (1997) Isolation by differential display and characterization of a tobacco auxin-responsive cDNA Nt-gh3, related to GH3. FEBS Lett 419:131–136

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protocol 3:1101–1108

    Article  CAS  Google Scholar 

  • Staswick PE (2002) Jasmonate response locus JAR1 and several related arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell Online 14:1405–1415

    Article  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell Online 16:2117–2127

    Article  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun X, Wang F, Cai H, Zhao C, Ji W, Zhu Y (2013) Functional characterization of an Arabidopsis prolyl aminopeptidase AtPAP1 in response to salt and drought stresses. Plant Cell Tissue Organ Cult 114:325–338

    Article  CAS  Google Scholar 

  • Suza WP, Rowe ML, Hamberg M, Staswick PE (2010) A tomato enzyme synthesizes (+)-7-iso-jasmonoyl-l-isoleucine in wounded leaves. Planta 231:717–728

    Article  CAS  PubMed  Google Scholar 

  • Swarup R et al (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Takase T, Nakazawa M, Ishikawa A, Manabe K, Matsui M (2003) DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation. Plant Cell Physiol 44:1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Takase T et al (2004) ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37:471–483

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro M, Malafronte N, Alfieri M, De Tommasi N, Leone A (2014) Enhanced biosynthesis of bioactive abietane diterpenes by overexpressing AtDXS or AtDXR genes in Salvia sclarea hairy roots. Plant Cell Tissue Organ Cult

  • Veylder LD, Joubès J, Inzé D (2003) Plant cell cycle transitions. Curr Opin Plant Biol 6:536–543

    Article  PubMed  Google Scholar 

  • Wang H, C-e Tian, Duan J, Wu K (2008) Research progresses on GH3 s, one family of primary auxin-responsive genes. Plant Growth Regul 56:225–232

    Article  CAS  Google Scholar 

  • Westfall CS, Herrmann J, Chen Q, Wang S, Jez JM (2010) Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant Signal Behav 5:1607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Li Y, Shen H (2012) Somatic embryogenesis and plant regeneration from immature zygotic embryo cultures of mountain ash (Sorbus pohuashanensis). Plant Cell, Tissue Organ Cult 109:547–556

    Article  CAS  Google Scholar 

  • Zhang Z, Wang M, Li Z, Li Q, He Z (2008) Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense responses. Plant Signal Behav 3:537–542

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science and Technology Program of China during the 12th Five-Year Plan Period (Grant No. 2013AA102704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Chen, S., Wang, S. et al. BpGH3.5, an early auxin-response gene, regulates root elongation in Betula platyphylla × Betula pendula . Plant Cell Tiss Organ Cult 120, 239–250 (2015). https://doi.org/10.1007/s11240-014-0599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0599-9

Keywords

Navigation