Log in

An efficient PCCM masking scheme for PAPR reduction and encryption in OFDM-VLC system

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Wide usage of Orthogonal frequency division multiplexing (OFDM) in visible light communication (VLC) systems aids in sharing immense multimedia files. But, an increase in the peak-to-average power ratio (PAPR) becomes a setback for OFDM. This paper focuses on PAPR reduction and encrypted image transmission in OFDM-based VLC systems using masking approach. The proposed technique generates a mask with the random sequence from a Pi-based coupled chaotic map (PCCM). The ciphering of the transmitted image data involves twofold administration of the PCCM mask. First, the image data is confused using Arnold’s Cat Map (ACM), and then the PCCM mask is applied. For the second time, the PCCM masks are applied on the equal-sized blocks of the subdivided image data at the Quadrature Amplitude Modulation (QAM) mapper stage, hence secures the transmission path. The proposed masking scheme frustrates statistical, brute-force and differential attacks and has a large key space of about \(10^{340}\). The PCCM based masking scheme is able to reduce PAPR from 13.5 dB to 6 dB, with 56% reduction percentile when compared to the normal OFDM system, and the same is validated by Complementary cumulative distribution function (CCDF). The decryption quality of the PCCM mask based encryption approach is proven better with high correlation coefficient and output signal-to-noise ratio (SNR) values. This scheme also maintains the condition of the image shared with a Bit error rate (BER) improvement of \(\thicksim \)1.2 to 1.5 dB compared to the normal OFDM system. This proposed technique is evaluated by simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Algorithm 1
Algorithm 2
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article

References

  1. Wang, Y., Wang, Y., Chi, N., Jianjun, Yu., & Shang, H. (2013). Demonstration of 575-mb/s downlink and 225-mb/s uplink bi-directional scm-wdm visible light communication using rgb led and phosphor-based led. Optics Express, 21(1), 1203–1208. https://doi.org/10.1364/OE.21.001203

    Article  Google Scholar 

  2. Qinghua, W., Li, Z., Zhou, J., Jiang, H., Zhiyang, H., Liu, Y., & **e, G. (2014). Sofia: Toward service-oriented information centric networking. IEEE Network, 28(3), 12–18. https://doi.org/10.1109/MNET.2014.6963803

    Article  Google Scholar 

  3. Yiguang W., **ngxing H., Li T., Jianyang S., and Nan C. (2015a) 4.5-gb/s rgb-led based wdm visible light communication system employing cap modulation and rls based adaptive equalization. Optics Express, 23(10): 13626–13633. https://doi.org/10.1364/OE.23.013626.

  4. Wang, Q., Wang, Z. & Dai, L., (2015b) Multiuser mimo-ofdm for visible light communications. IEEE Photonics Journal,7(6), 1–11. https://doi.org/10.1109/JPHOT.2015.2497224

  5. Sandoval, F., Poitau, G., & Gagnon, F. (2017). Hybrid peak-to-average power ratio reduction techniques: Review and performance comparison. IEEE Access, 5, 27145–27161. https://doi.org/10.1109/ACCESS.2017.2775859

    Article  Google Scholar 

  6. Peng Z., Fangchen H., Guoqiang L., and Nan C. (2020) Optimized qam order with probabilistic sha** for the nonlinear underwater vlc channel. In optical fiber communication conference, pages Th1K–7. Optica Publishing Group. https://doi.org/10.1364/OFC.2020.Th1K.7.

  7. Mohammed, A. E., Elsherbini, M. M., AbdelKader, H. M., & Aly, M. H. (2020). Exploring the effect of led nonlinearity on the performance of layered aco-ofdm. Applied Optics, 59(24), 7343–7351. https://doi.org/10.1364/AO.397559

    Article  Google Scholar 

  8. Popoola, W. O., Ghassemlooy, Z., & Stewart, B. G. (2014). Pilot-assisted papr reduction technique for optical OFDM communication systems. Journal of Lightwave Technology, 32(7), 1374–1382.

    Article  Google Scholar 

  9. Li, X., & Cimini, L. J. (1997). Effects of clip** and filtering on the performance of ofdm. In 1997 IEEE 47th vehicular technology conference. Technology in Motion, 3, 1634–1638.

    Google Scholar 

  10. Wunder, G., Fischer, R. F. H., Boche, H., Litsyn, S., & No, J.-S. (2013). The papr problem in ofdm transmission: New directions for a long-lasting problem. IEEE Signal Processing Magazine, 30(6), 130–144. https://doi.org/10.1109/MSP.2012.2218138

    Article  Google Scholar 

  11. Jemimah, J. P. P., & Amali, S. M. J. (2023). Secure and low papr ofdm system using tccm. Annals of Telecommunications, 78(7), 459–474.

    Google Scholar 

  12. Chow, C.-W., Liu, Y., Yeh, C.-H., Chen, C.-Y., Lin, C.-N., & Hsu, D.-Z. (2015). Secure communication zone for white-light led visible light communication. Optics Communications, 344, 81–85. https://doi.org/10.1016/j.optcom.2015.01.055

    Article  Google Scholar 

  13. Pan, G., Ye, J., & Ding, Z. (2016). On secure vlc systems with spatially random terminals. IEEE Communications Letters, 21(3), 492–495. https://doi.org/10.1109/LCOMM.2016.2643632

    Article  Google Scholar 

  14. Wang, Z., Chen, F., Qiu, W., Chen, S., & Ren, D. (2018). A two layer chaotic encryption scheme of secure image transmission for dct precoded ofdm-vlc transmission. Optics Communications, 410, 94–101. https://doi.org/10.1016/j.optcom.2017.09.095

    Article  Google Scholar 

  15. Taha, B., Fayed, H. A., Aly, M. H., & Mahmoud, M. (2022). A reduced papr hybrid ofdm visible light communication system. Optical and Quantum Electronics, 54(12), 815. https://doi.org/10.1007/s11082-022-04219-0

    Article  Google Scholar 

  16. Freag, H., Hassan, E. S., El-Dolil, S. A., & Dessouky, M. I. (2018). Papr reduction for ofdm-based visible light communication systems using proposed hybrid technique. International Journal of Communication Systems, 31(10), e3582. https://doi.org/10.1002/dac.3582

    Article  Google Scholar 

  17. Zhongpeng Wang and Shoufa Chen. A chaos-based encryption scheme for dct precoded ofdm-based visible light communication systems. Journal of Electrical and Computer Engineering, 2016, 2016a. https://doi.org/10.1155/2016/2326563.

  18. Wang, Z., & Chen, S. (2016). Combined peak-to-average power ratio reduction and physical layer security enhancement in optical orthogonal frequency division multiplexing visible-light communication systems. Optical Engineering, 55(7), 076110–076110. https://doi.org/10.1117/1.OE.55.7.076110

    Article  Google Scholar 

  19. Wang, Z., Wang, Z., & Chen, S. (2019). Encrypted image transmission in ofdm-based vlc systems using symbol scrambling and chaotic dft precoding. Optics Communications, 431, 229–237. https://doi.org/10.1016/j.optcom.2018.09.045

    Article  Google Scholar 

  20. Wang, Z., & Qiu, W. (2017). Secure image transmission over dft-precoded ofdm-vlc systems based on chebyshev chaos scrambling. Optics Communications, 397, 84–90. https://doi.org/10.1016/j.optcom.2017.03.076

    Article  Google Scholar 

  21. Kohda, T., & Tsuneda, A. (2018). Information sources using chaotic dynamics. Chaotic Electronics in Telecommunications, 3, 81–127.

    Article  Google Scholar 

  22. Denny G., Jeff F. (2024). Encounters with chaos and fractals. CRV Press,

  23. Gan, H., **ao, S., & Zhao, Y. (2018). A large class of chaotic sensing matrices for compressed sensing. Signal Processing, 149, 193–203. https://doi.org/10.1016/j.sigpro.2018.03.014

    Article  Google Scholar 

  24. Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), 285–317.

    Article  Google Scholar 

  25. Walter G.. Walter G. (2010). Lyapunov exponents and chaos. In: Classical Mechanics: Systems of Particles and Hamiltonian Dynamics, pp 503–516. https://doi.org/10.1007/978-3-642-03434-3_26.

  26. Delgado-Bonal, A., & Marshak, A. (2019). Approximate entropy and sample entropy: A comprehensive tutorial. Entropy, 21(6), 541. https://doi.org/10.3390/e21060541

    Article  Google Scholar 

  27. Zhongyun H., and Yicong Z. (2016). Nonlinear chaotic processing model. ar**v preprint ar**v:1612.05154.

  28. Hua, Z., Zhou, B., & Zhou, Y. (2018). Sine chaotification model for enhancing chaos and its hardware implementation. IEEE Transactions on Industrial Electronics, 66(2), 1273–1284. https://doi.org/10.1109/TIE.2018.2833049

    Article  Google Scholar 

  29. Belazi, A., Abd, A., El-Latif, A., & Safya, B. (2016). A novel image encryption scheme based on substitution-permutation network and chaos. Signal Processing, 128, 155–170. https://doi.org/10.1016/j.sigpro.2016.03.021

    Article  Google Scholar 

  30. Hua, Z., Zhou, B., & Zhou, Y. (2017). Sine-transform-based chaotic system with fpga implementation. IEEE Transactions on Industrial Electronics, 65(3), 2557–2566. https://doi.org/10.1109/TIE.2017.2736515

    Article  Google Scholar 

  31. Gan, H., Li, Z., Li, J., Wang, X., & Cheng, Z. (2014). Compressive sensing using chaotic sequence based on chebyshev map. Nonlinear Dynamics, 78, 2429–2438. https://doi.org/10.1007/s11071-014-1600-1

    Article  Google Scholar 

  32. Zhiqiang C., Wencheng W. Yuezhang Dai, Lun Li, et al. (2022) Novel one-dimensional chaotic system and its application in image encryption. Complexity, 2022.

  33. Fang, L., Shiyao, J., **aodan, X., & Minghao, T. (2019). Improved chaotic sequence generation method based on direct spread spectrum. In Journal of Physics: Conference Series, 1237, 1–9. https://doi.org/10.1088/1742-6596/1237/4/042006

    Article  Google Scholar 

  34. Richard van N. and Ramjee P. (2000). OFDM for wireless multimedia communications. Artech House, Inc.,

  35. Klaas, M., Zwaag, V., Neves, J. L. C., Rocha, H. R. O., Segatto, M. E. V., & Silva, J. A. L. (2019). Adaptation to the leds flicker requirement in visible light communication systems through ce-ofdm signals. Optics Communications, 441, 14–20.

    Article  Google Scholar 

  36. William S., and Djordjevic I.B. (2009). OFDM for optical communications. Academic press.

  37. Wang, Z., Chen, S., Zhou, Y., Chen, M., Tang, J., & Chen, L. (2014). Combining discrete cosine transform with clip** for papr reduction in intensity-modulated ofdm systems. Optoelectronics Letters, 10(5), 356–359. https://doi.org/10.1007/s11801-014-4121-8

    Article  Google Scholar 

  38. Li M., Liang T., and He Y-J. (2013) Arnold transform based image scrambling method. In 3rd International Conference on Multimedia Technology (ICMT-13), pages 1302–1309. Atlantis Press. https://doi.org/10.2991/icmt-13.2013.160.

  39. Jeffrey B.C., Joseph M.K. (1996) Modeling of nondirected wireless infrared channels. In Proceedings of ICC/SUPERCOMM’96-international conference on communications, vol.2, pp 1227–1231. https://doi.org/10.1109/ICC.1996.541403.

  40. El-Zoghdy, S. F., El-sayed, H. S., & Faragallah, O. S. (2020). Transmission of chaotic-based encrypted audio through ofdm. Wireless Personal Communications, 113, 241–261. https://doi.org/10.1007/s11277-020-07187-4

    Article  Google Scholar 

  41. Zhou, N., Zhang, A., Zheng, F., & Gong, L. (2014). Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Optics Laser Technology, 62, 152–160. https://doi.org/10.1016/j.optlastec.2014.02.015

    Article  Google Scholar 

  42. Zareai, D., Balafar, M., & Derakhshi, M. R. F. (2021). A new grayscale image encryption algorithm composed of logistic map**, arnold cat, and image blocking. Multimedia Tools and Applications, 80, 18317–18344. https://doi.org/10.1007/s11042-021-10576-x

    Article  Google Scholar 

  43. Wang, Z. (2019). Secure image transmission in wireless ofdm systems using secure block compression-encryption and symbol scrambling. IEEE Access, 7, 126985–126997. https://doi.org/10.1109/ACCESS.2019.2939266

    Article  Google Scholar 

  44. IEEE Computer Society Standards Committee. (1985). Working group of the Microprocessor Standards Subcommittee and American National Standards Institute. IEEE standard for binary floating-point arithmetic, volume 754. IEEE.

  45. Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 28(4), 656–715.

    Article  Google Scholar 

  46. Farid, S. M., Saleh, M. Z., Elbadawy, H. M., & Elramly, S. H. (2023). Asco-ofdm based vlc system throughput improvement using papr precoding reduction techniques. Optical and Quantum Electronics, 55(5), 410.

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed equally to this work

Corresponding author

Correspondence to J. P. P. Jemimah.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemimah, J.P.P., Miruna Joe Amali, S. An efficient PCCM masking scheme for PAPR reduction and encryption in OFDM-VLC system. Telecommun Syst (2024). https://doi.org/10.1007/s11235-024-01174-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11235-024-01174-x

Keywords

Navigation