Log in

Feed-forward ANN and traditional machine learning-based prediction of biogas generation rate from meteorological and organic waste parameters

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This study presents a comprehensive investigation into the prediction of biogas production (BP) using meteorological parameters and organic waste (OW) data through feed-forward artificial neural network (ANN) and traditional machine learning (ML) techniques. BP is a crucial renewable energy source, derived from the anaerobic digestion of OW, and its efficient prediction holds immense importance for sustainable waste management and energy production. The dataset used in the study comprised approximately 728 sample points, encompassing records of meteorological parameters, OW, and biogas yields for the period 2015–2021. Additionally, autoregressive integrated moving average (ARIMA) models have been employed to enhance long-term forecasting of BP. The results of the model validation were highly promising. The MLP model demonstrated remarkable performance with a root mean-squared error (RMSE) of 2.76 and an R-squared (R2) value of 0.94, indicating its accuracy in predicting BP rates. Moreover, for forecasting future data, the ARIMA-MLP model outperformed others, yielding a standard error of 5.1152 and a biogas yield of approximately 90 m3. These findings underscore the limitations of traditional empirical approaches and highlight the potential of ML algorithms as effective reconstruction techniques. By develo** robust and accurate region-specific BP rate models, these ML methods offer valuable support in fostering integrated circular agricultural systems for a sustainable global future. The integration of ML in waste-to-energy processes can play a significant role in addressing environmental challenges, advancements in sustainable waste management and clean energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and analysed in this study are mentioned in the references section, and the rest of the predicted datasets will be made available on reasonable request.

References

  1. International Energy Agency (2021) World energy outlook 2021–analysis. In: IEA. https://www.iea.org/reports/world-energy-outlook-2021

  2. Ministry of New and Renewable Energy (2019) Annual report. https://mnre.gov.in/img/documents/uploads/file_f-1597797108502.pdf. 2022

  3. Sawhney A (2013) Policy monitor: renewable energy policy in india: addressing energy poverty and climate mitigation. Rev Environ Econ Policy 7:296–312. https://doi.org/10.1093/reep/ret010

    Article  Google Scholar 

  4. Kumar JCR, Majid MA (2020) Renewable energy for sustainable development in india: current status, future prospects, challenges, employment, and investment opportunities. Energy Sustain Soc 10:1–36. https://doi.org/10.1186/s13705-019-0232-1

    Article  Google Scholar 

  5. Heidari H, Akbari M, Souhankar A, Hafezi R (2022) Review of global energy trends towards 2040 and recommendations for Iran oil and gas sector. Int J Environ Sci Technol 19:8007–8018. https://doi.org/10.1007/s13762-022-03963-w

    Article  Google Scholar 

  6. Wang P, Wang H, Qiu Y et al (2018) Microbial characteristics in anaerobic digestion process of food waste for methane production–a review. Biores Technol 248:29–36. https://doi.org/10.1016/j.biortech.2017.06.152

    Article  Google Scholar 

  7. Du M, Liu X, Wang D et al (2021) Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge. Water Res 188:116539. https://doi.org/10.1016/j.watres.2020.116539

    Article  Google Scholar 

  8. Sridhar A, Kapoor A, Senthil Kumar P et al (2021) Conversion of food waste to energy: a focus on sustainability and life cycle assessment. Fuel 302:121069. https://doi.org/10.1016/j.fuel.2021.121069

    Article  Google Scholar 

  9. Xu F, Li Y, Ge X et al (2018) Anaerobic digestion of food waste–challenges and opportunities. Biores Technol 247:1047–1058. https://doi.org/10.1016/j.biortech.2017.09.020

    Article  Google Scholar 

  10. Li Y, Zhao J, Krooneman J, Euverink GJW (2021) Strategies to boost anaerobic digestion performance of cow manure: laboratory achievements and their full-scale application potential. Sci Total Environ 755:142940. https://doi.org/10.1016/j.scitotenv.2020.142940

    Article  Google Scholar 

  11. Nkuna R, Roopnarain A, Rashama C, Adeleke R (2021) Insights into organic loading rates of anaerobic digestion for biogas production: a review. Crit Rev Biotechnol 42:487–507. https://doi.org/10.1080/07388551.2021.1942778

    Article  Google Scholar 

  12. Hu C, Yan B, Wang K, **ao X (2018) Modeling the performance of anaerobic digestion reactor by the anaerobic digestion system model (ADSM). J Environ Chem Eng 6:2095–2104. https://doi.org/10.1016/j.jece.2018.03.018

    Article  Google Scholar 

  13. Naroznova I, Møller J, Scheutz C (2016) Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions. Waste Manage 58:397–407. https://doi.org/10.1016/j.wasman.2016.08.020

    Article  Google Scholar 

  14. Thyberg KL, Tonjes DJ (2017) The environmental impacts of alternative food waste treatment technologies in the U.S. J Clean Prod 158:101–108. https://doi.org/10.1016/j.jclepro.2017.04.169

    Article  Google Scholar 

  15. Appels L, Assche AV, Willems K et al (2011) Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Biores Technol 102:4124–4130. https://doi.org/10.1016/j.biortech.2010.12.070

    Article  Google Scholar 

  16. Alcaraz-González V, Harmand J, Rapaport A et al (2005) Robust interval-based regulation for anaerobic digestion processes. Water Sci Technol 52:449–456. https://doi.org/10.2166/wst.2005.0552

    Article  Google Scholar 

  17. Barnett MW, Andrews JF (1992) Expert system for anaerobic-digestion-process operation. J Environ Eng 118:949–963. https://doi.org/10.1061/(asce)0733-9372(1992)118:6(949)

    Article  Google Scholar 

  18. Chynoweth DP, Svoronos SA, Lyberatos G et al (1994) Real-time expert system control of anaerobic digestion. Water Sci Technol 30:21–29. https://doi.org/10.2166/wst.1994.0574

    Article  Google Scholar 

  19. Holubar P, Zani L, Hager M et al (2003) Start-up and recovery of a biogas-reactor using a hierarchical neural network-based control tool. J Chem Technol Biotechnol 78:847–854. https://doi.org/10.1002/jctb.854

    Article  Google Scholar 

  20. O M-Ah, P Sj, Femat R, González-Alvarez V, (2007) Robust nonlinear control of a pilot-scale anaerobic digester. In: Femat R, González-Álvarez V (eds) Méndez-Acosta O. Springer, Berlin, pp 165–199

    Google Scholar 

  21. Mu S, Zeng Y, Wu P (2008) Multivariable control of anaerobic reactor by using external recirculation and bypass ratio. J Chem Technol Biotechnol 83:892–903. https://doi.org/10.1002/jctb.1888

    Article  Google Scholar 

  22. Zaefferer M, Gaida D, Bartz-Beielstein T (2016) Multi-fidelity modeling and optimization of biogas plants. Appl Soft Comput 48:13–28. https://doi.org/10.1016/j.asoc.2016.05.047

    Article  Google Scholar 

  23. Gaida D, Wolf C, Bongards M (2017) Feed control of anaerobic digestion processes for renewable energy production: a review. Renew Sustain Energy Rev 68:869–875. https://doi.org/10.1016/j.rser.2016.06.096

    Article  Google Scholar 

  24. Matuszewska A, Owczuk M, Zamojska-Jaroszewicz A et al (2016) Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors. Energy Convers Manage 125:309–319. https://doi.org/10.1016/j.enconman.2016.02.072

    Article  Google Scholar 

  25. Chen L, Cong R-G, Shu B, Mi Z-F (2017) A sustainable biogas model in China: the case study of Bei**g Deqingyuan biogas project. Renew Sustain Energy Rev 78:773–779. https://doi.org/10.1016/j.rser.2017.05.027

    Article  Google Scholar 

  26. Andrade Cruz I, Chuenchart W, Long F et al (2022) Application of machine learning in anaerobic digestion: perspectives and challenges. Bioresour Technology 345:126433. https://doi.org/10.1016/j.biortech.2021.126433

    Article  Google Scholar 

  27. Ghofrani-Isfahani P, Baniamerian H, Tsapekos P et al (2020) Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate. Energy 191:116580. https://doi.org/10.1016/j.energy.2019.116580

    Article  Google Scholar 

  28. Tufaner F, Demirci Y (2020) Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models. Clean Technol Environ Policy 22:713–724. https://doi.org/10.1007/s10098-020-01816-z

    Article  Google Scholar 

  29. Batstone DJ, Puyol D, Flores-Alsina X, Rodríguez J (2015) Mathematical modelling of anaerobic digestion processes: applications and future needs. Rev Environ Sci Bio/Technol 14:595–613. https://doi.org/10.1007/s11157-015-9376-4

    Article  Google Scholar 

  30. Etuwe CN, Momoh IET (2016) Development of mathematical models and application of the modified Gompertz model for designing batch biogas reactors. Waste Biomass Valoriz 7:543–550. https://doi.org/10.1007/s1264901694828

    Article  Google Scholar 

  31. Bokossa IP, Krastanov AI, Rochkova Z, Angelov A (1993) Biosynthesis of invertase by Saccharomyces cerevisiae with sugarcane molasses as substrate. World J Microbiol Biotechnol 9:662–663. https://doi.org/10.1007/bf00369576

    Article  Google Scholar 

  32. Lovato G, Alvarado-Morales M, Kovalovszki A et al (2017) In-situ biogas upgrading process: modeling and simulations aspects. Biores Technol 245:332–341. https://doi.org/10.1016/j.biortech.2017.08.181

    Article  Google Scholar 

  33. Kazemi P, Bengoa C, Steyer J-P, Giralt J (2021) Data-driven techniques for fault detection in anaerobic digestion process. Process Saf Environ Prot 146:905–915. https://doi.org/10.1016/j.psep.2020.12.016

    Article  Google Scholar 

  34. Donoso-Bravo A, Pérez-Elvira S, Aymerich E, Fdz-Polanco F (2011) Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge. Biores Technol 102:660–666. https://doi.org/10.1016/j.biortech.2010.08.035

    Article  Google Scholar 

  35. Boubaker F, Ridha BC (2008) Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1). Biores Technol 99:6565–6577. https://doi.org/10.1016/j.biortech.2007.11.035

    Article  Google Scholar 

  36. Fatolahi Z, Arab G, Razaviarani V (2020) Calibration of the anaerobic digestion Model No. 1 for anaerobic digestion of organic fraction of municipal solid waste under mesophilic condition. Biomass Bioenergy 139:105661. https://doi.org/10.1016/j.biombioe.2020.105661

    Article  Google Scholar 

  37. Nguyen DD, Jeon B-H, Jeung JH et al (2019) Thermophilic anaerobic digestion of model organic wastes: evaluation of biomethane production and multiple kinetic models analysis. Biores Technol 280:269–276. https://doi.org/10.1016/j.biortech.2019.02.033

    Article  Google Scholar 

  38. Wang L, Long F, Liao W, Liu H (2020) Prediction of anaerobic digestion performance and identification of critical operational parameters using machine learning algorithms. Bioresour Technol 298:122495. https://doi.org/10.1016/j.biortech.2019.122495

    Article  Google Scholar 

  39. Fanourgakis GS, Gkagkas K, Tylianakis E, Froudakis G (2020) A generic machine learning algorithm for the prediction of gas adsorption in nanoporous materials. J Phys Chem C 124:7117–7126. https://doi.org/10.1021/acs.jpcc.9b10766

    Article  Google Scholar 

  40. Marsland S (2015) Machine learning: an algorithmic perspective. Crc Press, Boca Raton

    Google Scholar 

  41. Sahni N, Simon G, Arora R (2018) Development and validation of machine learning models for prediction of 1-year mortality utilizing electronic medical record data available at the end of hospitalization in multicondition patients: a proof-of-concept study. J Gen Intern Med 33:921–928. https://doi.org/10.1007/s11606-018-4316-y

    Article  Google Scholar 

  42. Alzubi J, Nayyar A, Kumar A (2018) Machine learning from theory to algorithms: an overview. J Phys Conf Ser 1142:012012. https://doi.org/10.1088/17426596/1142/1/012012

    Article  Google Scholar 

  43. Alejo L, Atkinson J, Guzmán-Fierro V, Roeckel M (2018) Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques. Environ Sci Pollut Res 25:21149–21163. https://doi.org/10.1007/s11356-018-2224-7

    Article  Google Scholar 

  44. Zareei S, Khodaei J (2017) Modeling and optimization of biogas production from cow manure and maize straw using an adaptive neuro-fuzzy inference system. Renew Energy 114:423–427. https://doi.org/10.1016/j.renene.2017.07.050

    Article  Google Scholar 

  45. De Clercq D, Jalota D, Shang R et al (2019) Machine learning powered software for accurate prediction of biogas production: a case study on industrial-scale Chinese production data. J Clean Prod 218:390–399. https://doi.org/10.1016/j.jclepro.2019.01.031

    Article  Google Scholar 

  46. De Clercq D, Wen Z, Fei F et al (2020) Interpretable machine learning for predicting biomethane production in industrial-scale anaerobic co-digestion. Sci Total Environ 712:134574. https://doi.org/10.1016/j.scitotenv.2019.134574

    Article  Google Scholar 

  47. Najafi B, Faizollahzadeh Ardabili S (2018) Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC). Resour Conserv Recycl 133:169–178. https://doi.org/10.1016/j.resconrec.2018.02.025

    Article  Google Scholar 

  48. Melo N, Santos SM, Gavazza S (2022) Organic matter and nutrient removal in a combined anaerobic–aerobic fixed-bed reactor treating digestate from anaerobic biodigester. Can J Civ Eng 115:1–5. https://doi.org/10.1139/cjce-2021-0469

    Article  Google Scholar 

  49. Bär K, Merkle W, Tuczinski M et al (2018) Development of an innovative two-stage fermentation process for high-calorific biogas at elevated pressure. Biomass Bioenerg 115:186–194. https://doi.org/10.1016/j.biombioe.2018.04.009

    Article  Google Scholar 

  50. Tauš P, Kudelas D, Taušová M, Gabániová Ľ (2020) Statistical approach for assessing the suitability of substrates for a biogas plant. Sustainability 12:9044. https://doi.org/10.3390/su12219044

    Article  Google Scholar 

  51. Almasi F, Soltanian S, Hosseinpour S et al (2018) Advanced soft computing techniques in biogas production technology. In: Tabatabaei M, Ghanavati H (eds) Biogas: fundamentals, process, and operation. Springer International Publishing, Cham, pp 387–417

    Chapter  Google Scholar 

  52. Yang Y, Zheng S, Ai Z, Jafari MMM (2021) On the prediction of biogas production from vegetables, fruits, and food wastes by ANFIS-and LSSVM-based models. Biomed Res Int 2021:1–8. https://doi.org/10.1155/2021/9202127

    Article  Google Scholar 

  53. Wang K, Yun S, **ng T et al (2021) Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: focusing on kinetic models for biogas production and digestate utilization. Bioresour Technol 323:124571. https://doi.org/10.1016/j.biortech.2020.124571

    Article  Google Scholar 

  54. Randles D, Benjamin R, Martens JP, Heine SJ (2018) Searching for answers in an uncertain world: meaning threats lead to increased working memory capacity. PLoS ONE 13:e0204640. https://doi.org/10.1371/journal.pone.0204640

    Article  Google Scholar 

  55. Singhal A, Gupta AK, Dubey B, Ghangrekar MM (2021) Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India. J Air Waste Manag Assoc 72:147–160. https://doi.org/10.1080/10962247.2021.1980450

    Article  Google Scholar 

  56. Guyon I, Elisseeff A (2003) An introduction of variable and feature selection. J Mach Learn Res Spec Issue Var Feature Sel 3:1157–1182. https://doi.org/10.1162/153244303322753616

    Article  Google Scholar 

  57. Mendenhall W, Sincich T (1993) A second course in business statistics: regression analysis. Dellen; Toronto, New York

  58. Sammut C, Webb GI (2017) Encyclopedia of machine learning and data mining. Springer, Boston

    Book  Google Scholar 

  59. Rawlings JO, Dickey DA, Pantula SG (1998) Applied regression analysis: a research tool. Springer, New York

    Book  Google Scholar 

  60. Kroese DP, Zdravko B, Taimre T, Vaisman R (2019) Data science and machine learning. CRC Press, Boca Raton

    Book  Google Scholar 

  61. Zaki MJ, Meira W (2014) Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press, New York

    Book  Google Scholar 

  62. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, second edition: data mining, inference, and prediction, 2nd edn. Springer, New York

    Book  Google Scholar 

  63. Yang X-S (2019) Introduction to algorithms for data mining and machine learning. Elsevier, London

    Google Scholar 

  64. Mohri M, Rostamizadeh A, Talwalkar A (2018) Foundations of machine learning. The Mit Press, Cambridge

    Google Scholar 

  65. Kuhn M, Johnson K, Springer Science+Business Media (2016) Applied predictive modeling. Springer, New York

    Google Scholar 

  66. Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques. Elsevier, Amsterdam

    Google Scholar 

  67. Clarke SM, Griebsch JH, Simpson TW (2004) Analysis of support vector regression for approximation of complex engineering analyses. J Mech Des 127:1077–1087. https://doi.org/10.1115/1.1897403

    Article  Google Scholar 

  68. Kubat M (2018) Introduction to machine learning. Springer International Pu, S.L

  69. Shalev-Shwartz S, Ben-David S (2015) Understanding machine learning: from theory to algorithms. Cambridge University Press, Delhi

    Google Scholar 

  70. Flach P (2012) Machine learning. Cambridge University Press, Cambridge

    Book  Google Scholar 

  71. Sutton C (2005) Classification and regression trees, bagging, and boosting. Handb Statist 24:303–329. https://doi.org/10.1016/S0169-7161(04)24011-1

    Article  Google Scholar 

  72. Breiman L (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  73. Dittmer C, Krümpel J, Lemmer A (2020) Power demand forecasting for demand-driven energy production with biogas plants. Renew Energy 163:1871–1877. https://doi.org/10.1016/j.renene.2020.10.099

    Article  Google Scholar 

  74. Roy P, Ahmed MdA, Shah MdH (2021) Biogas generation from kitchen and vegetable waste in replacement of traditional method and its future forecasting by using ARIMA model. Waste Dispos Sustain Energy 3:165–175. https://doi.org/10.1007/s42768-021-00070-3

    Article  Google Scholar 

  75. Hyndman RJ, Koehler AB, Snyder RD, Grose S (2002) A state space framework for automatic forecasting using exponential smoothing methods. Int J Forecast 18:439–454. https://doi.org/10.1016/s0169-2070(01)00110-8

    Article  Google Scholar 

  76. Droke C (2001) Moving averages simplified/by Clif Droke. Marketplace Books, Columbia

    Google Scholar 

  77. Genedy RA, Ogejo JA (2021) Using machine learning techniques to predict liquid dairy manure temperature during storage. Comput Electron Agric 187:106234. https://doi.org/10.1016/j.compag.2021.106234

    Article  Google Scholar 

  78. Wang Y, Huntington T, Scown CD (2021) Tree-Based automated machine learning to predict biogas production for anaerobic co-digestion of organic waste. ACS Sustain Chem Eng 9:12990–13000. https://doi.org/10.1021/acssuschemeng.1c04612

    Article  Google Scholar 

  79. Kumar Molugaram G, Rao S (2017) Statistical techniques for transportation engineering. Butterworth-Heinemann, Amsterdam

    Google Scholar 

  80. Blasius JP, Contrera RC, Maintinguer SI, Alves de Castro MCA (2020) Effects of temperature, proportion and organic loading rate on the performance of anaerobic digestion of food waste. Biotechnol Rep 27:e00503. https://doi.org/10.1016/j.btre.2020.e00503

    Article  Google Scholar 

  81. Cinar S, Cinar SO, Wieczorek N et al (2021) Integration of artificial intelligence into biogas plant operation. Processes 9:85. https://doi.org/10.3390/pr9010085

    Article  Google Scholar 

  82. https://www.soda-pro.com/web-services/meteo-data/merra

  83. https://cpcb.nic.in/uploads/MSW/Waste_generation_Composition.pdf

  84. https://data.gov.in/search?title=biogas%20production

Download references

Acknowledgements

The authors thankfully acknowledge the Centre for the Environment, Indian Institute of Technology Guwahati, India and Central Pollution Control Board (CPCB) for providing the data.

Funding

No external funding was obtained from any external funding agency.

Author information

Authors and Affiliations

Authors

Contributions

TS contributed to data extraction, data preprocessing, investigation, modelling, writing–original draft preparation, writing–review and editing, and validation. RVSU contributed to conceptualization, supervision, validation, visualization, and writing–review and editing.

Corresponding author

Correspondence to Ramagopal V. S. Uppaluri.

Ethics declarations

Conflict of interest

No potential conflict of interest.

Ethical approval

The submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 289 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, T., Uppaluri, R.V.S. Feed-forward ANN and traditional machine learning-based prediction of biogas generation rate from meteorological and organic waste parameters. J Supercomput 80, 2538–2571 (2024). https://doi.org/10.1007/s11227-023-05569-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05569-6

Keywords

Navigation