Log in

Effect of solvent polarity on the regioselective hydroxyalkylation of indole with trifluoroacetaldehyde hemiacetals

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The effect of solvents has been found as a crucial factor in determining the regioselectivity of the hydroxyalkylation of indole with trifluoroacetaldehyde hemiacetals. The appropriate selection of the solvent ensured to achieve absolute N1 or C3 regio/chemoselectivity of the reaction depending on the polarity and dielectric constant of the medium. Reaction conditions were optimized considering the effect of solvent, including temperature, time, and molar ratio of reactants to base. In order to rationalize this effect, density functional theory has been employed in which implicit as well as explicit role of solvent was studied, which were further validated with in situ 1H NMR spectroscopy experiments. The comparison of transition states derived from the implicit calculations revealed that the lowest energy path of the reaction in dimethyl sulfoxide (DMSO) leads to product formation with N-selectivity. Further DFT calculations on explicit interactions of indole with DMSO indicated enhanced nucleophilicity on the N atom compared to that of C3 atom, which is evident from the calculated electrostatic potential (ESP) fit charges of these complexes. These findings appear to support the experimental data and explain the N-selectivity in DMSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Muzalevskiy VM, Serdyuk OV, Nenajdenko VG (2014) Chemistry of fluorinated indoles. Fluroine in heterocyclic chemistry, vol 1, pp 117–156

    Google Scholar 

  2. Usachev BI (2016) J Fluor Chem 185:118–167

    Article  CAS  Google Scholar 

  3. Biswal S, Sahoo U, Sethy S, Kumar HKS, Banerjee M (2012) Asian J Pharm Clin Res 5:1–6

    CAS  Google Scholar 

  4. Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH (2013) Molecules 18:6620–6662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Török M, Abid M, Mhadgut SC, Török B (2006) Biochemistry 45:5377–5383

    Article  CAS  PubMed  Google Scholar 

  6. Sood A, Abid M, Hailemichael S, Foster M, Török B, Török M (2009) Bioorg Med Chem Lett 19:6931–6934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sood A, Abid M, Sauer C, Hailemichael S, Foster M, Török B, Török M (2011) Bioorg Med Chem Lett 21:2044–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Török B, Abid M, London G, Esquibel J, Török M, Mhadgut SC, Yan P, Prakash GKS (2005) Angew Chem Int Ed 44:3086–3089

    Article  CAS  Google Scholar 

  9. Abid M, Török B (2005) Adv Synth Catal 347:1797–1803

    Article  CAS  Google Scholar 

  10. Abid M, Teixeira L, Török B (2008) Org Lett 10:933–935

    Article  CAS  PubMed  Google Scholar 

  11. Rudnitskaya A, Huynh K, Török B, Stieglitz K (2009) J Med Chem 52:878–882

    Article  CAS  PubMed  Google Scholar 

  12. Peerannawar S, Horton W, Kokel A, Török F, Török M, Török B (2017) Struct Chem 28:391–402

    Article  CAS  Google Scholar 

  13. Horton W, Peerannawar S, Török B, Török M (2019) Struct Chem 30:23–35

    Article  CAS  Google Scholar 

  14. Thompson MJ, Louth JC, Ferrara S, Sorrell FJ, Irving BJ, Cochrane EJ, Meijer AJ, Chen B (2011) ChemMedChem 6:115–130

    Article  CAS  PubMed  Google Scholar 

  15. Török B, Sood A, Bag S, Kulkarni A, Borkin D, Lawler E, Dasgupta S, Landge SM, Abid M, Zhou W, Foster M, LeVine III H, Török M (2012) ChemMedChem 7:910–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gong G, Kato K (2001) J Fluor Chem 108:83–86

    Article  CAS  Google Scholar 

  17. Borkin D, Landge SM, Török B (2011) Chirality 23:612–616

    Article  CAS  PubMed  Google Scholar 

  18. Zhu X, Ganeshan AJ (2002) J Org Chem 67:2705–2708

    Article  CAS  PubMed  Google Scholar 

  19. Darehkordi A, Rahmani F, Hashemi V (2013) Tetrahedron Lett 54:4689–4692

    Article  CAS  Google Scholar 

  20. Nunomoto S, Kawakami K, Yamashita Y (1990) J Chem Soc Perkin Trans 1990:111–114

    Article  Google Scholar 

  21. Zhu Y, Rawal VH (2012) J Am Chem Soc 134:111–114

    Article  CAS  PubMed  Google Scholar 

  22. Sundberg RJ (1996) In: Indoles. Academic Press, London, Ch.9

    Google Scholar 

  23. Reinecke MG, Sebastian JF, Johnson HW, Pyun C (1972) J Org Chem 37:3066–3068

    Article  CAS  Google Scholar 

  24. Karchava AV, Melkonyan FS, Yurovskaya MA (2012) Chem Heterocycl Comp 48:391–407

    Article  CAS  Google Scholar 

  25. Leitch S, Jones AJ, McCluskey A (2005) Tetrahedron Lett, vol 46, pp 2915–2918

    Google Scholar 

  26. Santaniello E, Farachi C, Ponti F (1979) Synthesis 1979:617–618

    Article  Google Scholar 

  27. Li Y, Zhang L, Yuan H, Liang F, Zhang J (2015) Synlett 26:116–122

    CAS  Google Scholar 

  28. Le Noble WJ, Morris HF (1969) J Org Chem 34:1969–1973

    Article  Google Scholar 

  29. Kilic H, Bayindir S, Erdogan E, Saracoglu N (2012) Tetrahedron 68:5619–5630

    Article  CAS  Google Scholar 

  30. Schäfer C, Ellstrom CJ, Sood A, Alonzo J, Landge SM, Tran CD, Török B (2018) ARKIVOC part ii, pp 122–130

    Google Scholar 

  31. Becke AD (1988) Phys Rev A38:3098–3100

  32. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789

  33. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, GaoJ, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery, Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT

  34. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  35. Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  36. Legault CY (2009) CYLview, 1.0b; Université de Sherbrooke: Sherbrooke (Québec) Canada, http://www.cylview.org

  37. Zhou F, Liu X, Zhang N, Liang Y, Zhang R, **n X, Dong D (2014) Org Lett 16:4693–4694

    Article  CAS  Google Scholar 

  38. Ryabov AD, Polyakov VA, Talebarovskaya IK, Katkova VA, Yatsimirskii AK, Berezin IV (1988) Russ Chem Bull 37:162–167

    Article  Google Scholar 

  39. Tapia O, Bertran J (2002) Solvent effects and chemical reactivity. Kluwert, New York

    Book  Google Scholar 

  40. Casey BM, Eakin CA, Jiao J, Sadasivam DV, Flowers RA (2009) Tetrahedron 65:10762–10768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Landge SM, Borkin DA, Török B (2007) Tetrahedron Lett 48:6372–6376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin P (2003) Trifluoroacetaldehyde. Encyclopedia of reagents for organic synthesis (e-EROS). Wiley, New York

    Google Scholar 

  43. Bucsi I, Török B, Marco AI, Rasul G, Prakash GKS, Olah GA (2002) J Am Chem Soc 124:7728–7736

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support from the Department of Chemistry and BioChemistry, Georgia Southern University (GSU); Department of Chemistry, University of Massachusetts (UMASS), Boston; and the College Office of Undergraduate Research (COUR-GSU) is gratefully recognized.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Béla Török or Shainaz M. Landge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peerannawar, S., Sood, A., Brown, A. et al. Effect of solvent polarity on the regioselective hydroxyalkylation of indole with trifluoroacetaldehyde hemiacetals. Struct Chem 30, 1941–1956 (2019). https://doi.org/10.1007/s11224-019-01386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01386-x

Keywords

Navigation