Log in

Computational study on the molecular conformations of phenolic compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The study of the conformation of eight phenolic compounds (i.e. phenol, guaiacol, syringol, pyrocatechol, o-, m-, p-cresol and vanillin) was carried out using B3LYP (Becke, 3-parameter, Lee-Yan-Parr) method and cc-pVTZ (correlation consistent polarized polarisation Valence triple zêta) basis set. Potential energy surfaces were plotted in order to identify the minimum energy structures and the transition states. For the first time, structures of vanillin and syringol were completely determined. Moreover, our work also confirms that the most stable conformations of m-cresol and p-cresol are obtained when the methyl group presents a hydrogen atom at the perpendicular of the benzene ring. The possibility of intramolecular hydrogen bonding was also investigated. Guaiacol, pyrocatechol, syringol and vanillin present a structure stabilized by the presence of a moderate hydrogen bond. Finally, potential energy barriers and rotational potential functions were calculated. The comparison of the rotational potential parameters for each molecule highlights the presence of similarities specific to each substituent and their neighbours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pakdel H, Amen-Chen C, Zhang J, Roy C (1996) Phenolic compounds from vacuum pyrolysis of biomass. Bio-Oil Prod Util. CPL Press, UK pp 124–136

  2. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493. doi:10.1016/S0146-6380 (99)00120-5

    Article  CAS  Google Scholar 

  3. Bridgwater AV, Bridge SA (1991) A review of biomass pyrolysis and pyrolysis technologies. In: Bridgwater AV, Grassi G (eds) Biomass pyrolysis liquids upgrading and utilization. Springer Netherlands, Dordrecht, pp. 11-92

  4. Pakdel H, Roy C, Amen-Chen C (1997) Phenolic compounds from vacuum pyrolysis of wood wastes. Can J Chem Eng 75:121–126. doi:10.1002/cjce.5450750119

    Article  CAS  Google Scholar 

  5. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79:277–299. doi:10.1016/S0960-8524 (00)00180-2

    Article  CAS  Google Scholar 

  6. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. doi:10.1021/cr900354u

    Article  CAS  Google Scholar 

  7. Murwanashyaka JN, Pakdel H, Roy C (2001) Separation of syringol from birch wood-derived vacuum pyrolysis oil. Sep Purif Technol 24:155–165. doi:10.1016/S1383-5866(00)00225-2

    Article  CAS  Google Scholar 

  8. Kleinert M, Barth T (2008) Phenols from lignin. Chem Eng Technol 31:736–745. doi:10.1002/ceat.200800073

    Article  CAS  Google Scholar 

  9. Amen-Chen C, Pakdel H, Roy C (1997) Separation of phenols from eucalyptus wood tar. Biomass Bioenergy 13:25–37. doi:10.1016/S0961-9534(97)00021-4

    Article  CAS  Google Scholar 

  10. Wang S, Wang Y, Cai Q, et al. (2014) Multi-step separation of monophenols and pyrolytic lignins from the water-insoluble phase of bio-oil. Sep Purif Technol 122:248–255. doi:10.1016/j.seppur.2013.11.017

    Article  Google Scholar 

  11. Lavoie J-M, Baré W, Bilodeau M (2011) Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour Technol 102:4917–4920. doi:10.1016/j.biortech.2011.01.010

    Article  CAS  Google Scholar 

  12. Helmut F, Heinz-Werner V, Toshikazu H, Wilfrried P (1985) Phenol derivatives. Ullmann’s Encycl Ind Chem VCH Ger 19:299–357

    Google Scholar 

  13. Ikegami F, Sekine T, Fujii Y (1998) Anti-dermaptophyte activity of phenolic compounds in “mokusaku-eki”. Yakugaku Zasshi 118:27–30

    Article  CAS  Google Scholar 

  14. Maga JA, Katz I (1978) Simple phenol and phenolic compounds in food flavor. CRC Crit Rev Food Sci Nutr 10:323–372. doi:10.1080/10408397809527255

    Article  CAS  Google Scholar 

  15. Fiege H, Voges H-W, Hammamoto T, Umemura S, Iwata T, Miki H, Fujita Y, Buysch H-J, Garbe D, Paulus W (2000) Phenol Derivatives, Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, New York

  16. Radlein D (1997) Chemicals and materials from biomass. PyNe Pyrolysis Netw 4

  17. Meier D, Larimer DR, Faix O (1986) Direct liquefaction of different lignocellulosics and their constituents. Fuel 65:910–915. doi:10.1016/0016-2361(86)90197-3

    Article  CAS  Google Scholar 

  18. Korth H-G, de Heer MI, Mulder P (2002) A DFT study on intramolecular hydrogen bonding in 2-substituted phenols: conformations, enthalpies, and correlation with solute parameters. J Phys Chem A 106:8779–8789. doi:10.1021/jp025713d

    Article  CAS  Google Scholar 

  19. Estácio SG, Cabral do Couto P, Costa Cabral BJ, et al. (2004) Energetics of intramolecular hydrogen bonding in di-substituted benzenes by the ortho−para method. J Phys Chem A 108:10834–10843. doi:10.1021/jp0473422

    Article  Google Scholar 

  20. Fang W-H (2000) Theoretical characterization of the excited-state structures and properties of phenol and its one-water complex. J Chem Phys 112:1204–1211. doi:10.1063/1.480673

    Article  CAS  Google Scholar 

  21. Schumm S, Gerhards M, Roth W, et al. (1996) A CASSCF study of the S0 and S1 states of phenol. Chem Phys Lett 263:126–132. doi:10.1016/S0009-2614(96)01172-4

    Article  CAS  Google Scholar 

  22. Feller D, Feyereisen MW (1993) Ab initio study of hydrogen bonding in the phenol-water system. J Comput Chem 14:1027–1035. doi:10.1002/jcc.540140904

    Article  CAS  Google Scholar 

  23. Schütz M, Bürgi T, Leutwyler S (1992) Structures and vibrations of phenol · H2O and d-phenol · D2O based on ab initio calculations. J Mol Struct THEOCHEM 276:117–132. doi:10.1016/0166-1280(92)80026-I

    Article  Google Scholar 

  24. Watanabe H, Iwata S (1996) Theoretical studies of geometric structures of phenol-water clusters and their infrared absorption spectra in the O–H stretching region. J Chem Phys 105:420–431. doi:10.1063/1.471918

    Article  CAS  Google Scholar 

  25. Pohl M, Kleinermanns K (1988) Ab initio SCF calculations on hydrogen bonded cresol isomers. Z Für Phys At Mol Clust 8:385–392. doi:10.1007/BF01437106

    Article  CAS  Google Scholar 

  26. Dietrich SW, Jorgensen EC, Kollman PA, Rothenberg S (1976) A theoretical study of intramolecular hydrogen bonding in ortho-substituted phenols and thiophenols. J Am Chem Soc 98:8310–8324. doi:10.1021/ja00442a002

    Article  CAS  Google Scholar 

  27. Welzel A, Hellweg A, Merke I, Stahl W (2002) Structural and torsional properties of o-cresol and o-cresol-OD as obtained from microwave spectroscopy and ab initio calculations. J Mol Spectrosc 215:58–65. doi:10.1006/jmsp.2002.8600

    Article  CAS  Google Scholar 

  28. Balachandran V, Murugan M, Nataraj A, et al. (2014) Comparative vibrational spectroscopic studies, HOMO–LUMO, NBO analyses and thermodynamic functions of p-cresol and 2-methyl-p-cresol based on DFT calculations. Spectrochim Acta A Mol Biomol Spectrosc 132:538–549. doi:10.1016/j.saa.2014.04.194

    Article  CAS  Google Scholar 

  29. Richardson PR, Chapman MA, Wilson DC, et al. (2002) The nature of conformational preference in a number of p-alkyl phenols and p-alkyl benzenes. Phys Chem Chem Phys 4:4910–4915. doi:10.1039/b203954k

    Article  CAS  Google Scholar 

  30. Hellweg A, Hättig C (2007) On the internal rotations in p-cresol in its ground and first electronically excited states. J Chem Phys 127:024307. doi:10.1063/1.2752163

    Article  Google Scholar 

  31. Hellweg A, Hättig C, Merke I, Stahl W (2006) Microwave and theoretical investigation of the internal rotation in m-cresol. J Chem Phys 124:204305. doi:10.1063/1.2198842

    Article  Google Scholar 

  32. Puebla C, Ha T-K (1990) A theoretical study of conformations and rotational barriers in dihydroxybenzenes. J Mol Struct THEOCHEM 204:337–351. doi:10.1016/0166-1280(90)85085-2

    Article  Google Scholar 

  33. Bürgi T, Leutwyler S (1994) O–H torsional vibrations in the S 0 and S 1 states of catechol. J Chem Phys 101:8418–8429. doi:10.1063/1.468104

    Article  Google Scholar 

  34. Gerhards M, Perl W, Schumm S, et al. (1996) Structure and vibrations of catechol and catechol·H2O(D2O) in the S0 and S1 state. J Chem Phys 104:9362. doi:10.1063/1.471682

    Article  CAS  Google Scholar 

  35. Rudyk R, Molina MAA, Gómez MI, et al. (2004) Solvent effects on the structure and dipole moment of resorcinol. J Mol Struct THEOCHEM 674:7–14. doi:10.1016/j.theochem.2003.12.019

    Article  CAS  Google Scholar 

  36. Gómez-Zaleta B, Gómez-Balderas R, Hernández-Trujillo J (2010) Theoretical analysis of hydrogen bonding in catechol–n(H2O) clusters (n = 0…3). Phys Chem Chem Phys 12:4783. doi:10.1039/b922203k

    Article  Google Scholar 

  37. Mandado M, Graña AM, Mosquera RA (2004) Do 1,2-ethanediol and 1,2-dihydroxybenzene present intramolecular hydrogen bond? Phys Chem Chem Phys 6:4391–4396. doi:10.1039/B406266C

    Article  CAS  Google Scholar 

  38. Agache C, Popa VI (2006) Ab initio studies on the molecular conformation of lignin model compounds I. Conformational preferences of the phenolic hydroxyl and methoxy groups in guaiacol. Monatshefte Für Chem - Chem Mon 137:55–68. doi:10.1007/s00706-005-0404-x

    Article  CAS  Google Scholar 

  39. Dorofeeva OV, Shishkov IF, Karasev NM, et al. (2009) Molecular structures of 2-methoxyphenol and 1,2-dimethoxybenzene as studied by gas-phase electron diffraction and quantum chemical calculations. J Mol Struct 933:132–141. doi:10.1016/j.molstruc.2009.06.009

    Article  CAS  Google Scholar 

  40. Varfolomeev MA, Abaidullina DI, Solomonov BN, et al. (2010) Pairwise substitution effects, inter- and intramolecular hydrogen bonds in methoxyphenols and dimethoxybenzenes. Thermochemistry, calorimetry, and first-principles calculations. J Phys Chem B 114:16503–16516. doi:10.1021/jp108459r

    Article  CAS  Google Scholar 

  41. Cocinero EJ, Lesarri A, Écija P, et al. (2010) Conformational equilibria in vanillin and ethylvanillin. Phys Chem Chem Phys 12:12486. doi:10.1039/c0cp00585a

    Article  CAS  Google Scholar 

  42. Panicker CY, Varghese HT, Sa**a K, et al. (2008) IR, Raman and ab-initio calculations of 2,6-dimethoxyphenol. Orient J Chem 24:973

    CAS  Google Scholar 

  43. Zhang L, Peslherbe GH, Muchall HM (2006) Ultraviolet absorption spectra of substituted phenols: a computational study†. Photochem Photobiol 82:324–331. doi:10.1562/2005-07-08-RA-605

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09, rev. A. 02. Gaussian Inc, Wallingford

    Google Scholar 

  45. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:785–789

    Article  CAS  Google Scholar 

  47. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  48. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827. doi:10.1063/1.477924

    Article  CAS  Google Scholar 

  49. VanBesien E, Marques MPM (2003) Ab initio conformational study of caffeic acid. J Mol Struct THEOCHEM 625:265–275. doi:10.1016/S0166-1280(03)00026-5

    Article  CAS  Google Scholar 

  50. Radom L, Hehre WJ, Pople JA (1972) Molecular orbital theory of the electronic structure of organic compounds. XIII. Fourier component analysis of internal rotation potential functions in saturated molecules. J Am Chem Soc 94:2371–2381. doi:10.1021/ja00762a030

    Article  CAS  Google Scholar 

  51. Aota T, Ebata T, Ito M (1989) Rotational isomers and internal rotation of the methyl group in S0, S1 and ion of o-cresol. J Phys Chem 93:3519–3522. doi:10.1021/j100346a031

    Article  CAS  Google Scholar 

  52. Appel I, Kleinermanns K (1987) Fluorescence excitation spectra of hydrogen-bonded cresol-isomers in supersonic free jets. Berichte Bunsenges Für Phys Chem 91:140–152. doi:10.1002/bbpc.19870910213

    Article  CAS  Google Scholar 

  53. Hameka HF, Jensen JO (1995) Calculations of the energies, geometries and vibrational frequencies of the ground and first excited singlet states of toluene and p-cresol. J Mol Struct THEOCHEM 331:203–214. doi:10.1016/0166-1280(94)03888-R

    Article  CAS  Google Scholar 

  54. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  55. Ramírez FJ, López Navarrete JT (1993) Normal coordinate and rotational barrier calculations on 1,2-dihydroxybenzene. Vib Spectrosc 4:321–334. doi:10.1016/0924-2031(93)80006-2

    Article  Google Scholar 

  56. Brown CJ (1966) The crystal structure of catechol. Acta Crystallogr 21:170–174. doi:10.1107/S0365110X66002482

    Article  CAS  Google Scholar 

  57. Velavan R, Sureshkumar P, Sivakumar K, Natarajan S (1995) Vanillin-I. Acta Crystallogr C 51:1131–1133. doi:10.1107/S0108270194011923

    Article  Google Scholar 

  58. Bois C (1972) Structure de l’o-crésol. Acta Crystallogr B 28:25–31. doi:10.1107/S0567740872001815

    Article  CAS  Google Scholar 

  59. Bois C (1970) Structure du p-crésol à basse témperature. Acta Crystallogr B 26:2086–2092. doi:10.1107/S0567740870005411

    Article  CAS  Google Scholar 

  60. Bois C (1973) Structure du m-crésol. Acta Crystallogr B 29:1011–1017. doi:10.1107/S0567740873003778

    Article  CAS  Google Scholar 

  61. Larsen NW (1979) Microwave spectra of the six mono-13C-substituted phenols and of some monodeuterated species of phenol. Complete substitution structure and absolute dipole moment. J Mol Struct 51:175–190. doi:10.1016/0022-2860(79)80292-6

    Article  CAS  Google Scholar 

  62. Brusset H, Gillier-Pandraud H, Neuman A (1972) Strukturbestimmung bei-150 grad c von 2, 5-und 2, 3-dimethylphenol. Chem Informationsdienst 3

  63. Kojima T (1960) Potential barrier of phenol from its microwave spectrum. J Phys Soc Jpn 15:284–287. doi:10.1143/JPSJ.15.284

    Article  CAS  Google Scholar 

  64. Rozas I, Alkorta I, Elguero J (2001) Intramolecular hydrogen bonds in ortho-substituted hydroxybenzenes and in 8-susbtituted 1-hydroxynaphthalenes: can a methyl group be an acceptor of hydrogen bonds? J Phys Chem A 105:10462–10467. doi:10.1021/jp013125e

    Article  CAS  Google Scholar 

  65. Fedorov EE, Makarov OE, Pankratov AN, Grinev VS (2012) Gas–liquid chromatography-obtained differences in the dissolution enthalpy between two positional isomers in a polar stationary phase: a measure of the inter- or intramolecular hydrogen bond energy? J Chromatogr A 1241:76–83. doi:10.1016/j.chroma.2012.04.010

    Article  CAS  Google Scholar 

  66. Skvortsov IM, Makarov OE, Fedorov EE (2006) Further consideration of the gas–liquid chromatographic method for determining the intramolecular hydrogen bond energies with the example of 2-substituted phenols. J Chromatogr A 1132:248–255. doi:10.1016/j.chroma.2006.07.057

    Article  CAS  Google Scholar 

  67. Denisov GS, Sheikh-Zade MI, Esklna MV (1977) Determination of the energy of an intramolecular hydrogen bond with the help of competing equilibria. Zh Prikl Spektrosk 27:1049–1054

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Mutelet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 4983 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesari, L., Canabady-Rochelle, L. & Mutelet, F. Computational study on the molecular conformations of phenolic compounds. Struct Chem 29, 179–194 (2018). https://doi.org/10.1007/s11224-017-1017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1017-9

Keywords

Navigation