Log in

Structural similarities and diversity in a series of crystalline solids composed of 2-aminopyridines and glutaric acid

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A solvent co-crystallization of three 2-aminopyridine derivatives, 2-aminopyridine (AP), 2-amino-6-methylpyridine (AMP), and 2,6-diaminopyridine (DAP) with the odd-membered propane-1,3-dicarboxylic acid (C5H12O4 = GAH2, glutaric acid) resulted in six ionic crystalline products, (HAP)(GAH) (1), (HAMP)(GAH) (2, 3), (HDAP)(GAH) (4), (HDAP)2(GA) (5), and (HDAP)2(DAP)(GA)(EtOH) (6, EtOH = ethanol). New compounds were characterized by single-crystal and powder X-ray diffraction, melting points, and IR spectra. The proton transfer to the pyridine nitrogen atom in all compounds and the location of H-atom in the carboxylic group in the hydrogen glutarate anion in binary adducts 14 was determined reliably from the low-temperature X-ray experiments. All compounds adopt the recurring R 22 (8) 2-aminopyridine–carboxylic acid heteromeric supramolecular synthon. The aggregation of hydrogen glutarate anions in the C(8) chain motifs in 1–4 occurs via the homomeric COOH···COO robust pattern. Adducts 2 and 3 represent conformational polymorphs; adducts 4, 5 and 6 reveal the diversity in the components’ forms (ionic and neutral), acid–base ratios (1:1, 1:2, and 1:3), and hydrogen-bonding systems. This work demonstrates the variety of forms of glutaric acid in the H-bonded adducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shan N, Zaworotko MJ (2008) Drug Discov Today 13:440–446

    Article  CAS  Google Scholar 

  2. Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzmán HR, Almarsson Ö (2003) J Am Chem Soc 125:8456–8457

    Article  CAS  Google Scholar 

  3. McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, Mannion R, O’Donnell E, Park A (2006) Pharm Res 23:1888–1897

    Article  CAS  Google Scholar 

  4. Childs SL, Chyall LJ, Dunlap JT, Smolenskaya VN, Stahly BC, Stahly GP (2004) J Am Chem Soc 126:13335–13342

    Article  CAS  Google Scholar 

  5. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G (2011) Int J Pharm 419:1–11

    Article  CAS  Google Scholar 

  6. Sekhon BS (2009) Ars Pharm 50:99–117

    Google Scholar 

  7. Surov AO, Manin AN, Voronin AP, Drozd KV, Simagina AA, Churakov AV, Perlovich GL (2015) Eur J Pharm Sci 77:112–121

    Article  CAS  Google Scholar 

  8. Curiel D, Mas-Montoya M, Sanchez G (2015) Coord Chem Rev 284:19–66

    Article  CAS  Google Scholar 

  9. Fighera MR, Royes LFF, Furian AF, Schneider Oliveira M, Fiorenza NG, Frussa-Filho R, Petry JC, Coelho RC (2006) Neurobiol Dis 22:611–623

    Article  CAS  Google Scholar 

  10. Geib SJ, Vincent C, Fan E, Hamilton AD (1993) Angew Chem Int Ed 32:119–121

    Article  Google Scholar 

  11. Karle IL, Ranganathan D, Haridas V (1997) J Am Chem Soc 119:2777–2783

    Article  CAS  Google Scholar 

  12. Goswami S, Ghosh K, Dasgupta S (2000) J Org Chem 65:1907–1914

    Article  CAS  Google Scholar 

  13. Aakeröy CB, Hussain I, Desper J (2006) Cryst Growth Des 6:474–480

    Article  Google Scholar 

  14. Vishweshwar P, Nangia A, Lynch VM (2003) Cryst Growth Des 3:783–790

    Article  CAS  Google Scholar 

  15. Aakeröy CB, Rajbanshi A, Li ZJ, Desper J (2010) CrystEngComm 12:4231–4239

    Article  Google Scholar 

  16. Mukherjee A, Desiraju GR (2014) Cryst Growth Des 14:1375–1385

    Article  CAS  Google Scholar 

  17. Bhattacharya S, Saraswatula VG, Saha BK (2013) Cryst Growth Des 13:3651–3656

    Article  CAS  Google Scholar 

  18. Braga D, Dichiarante E, Palladino G, Grepioni F, Chierotti MR, Gobetto R, Pellegrino L (2010) CrystEngComm 12:3534–3536

    Article  CAS  Google Scholar 

  19. Sandhu B, Fonari MS, Sawyer K, Timofeeva TV (2013) J Mol Struct 1052:125–134

    Article  CAS  Google Scholar 

  20. Videnova-Adrabinska V, Etter MC (1995) J Chem Crystallogr 25:823–829

    Article  CAS  Google Scholar 

  21. Aakeröy CB, Panikkattu SV, DeHaven B, Desper J (2012) Cryst Growth Des 12:2579–2587

    Article  Google Scholar 

  22. Gopalan RS, Kumaradhas P, Kulkarni GU, Rao CNR (2000) J Mol Struct 521:97–106

    Article  Google Scholar 

  23. Shevchenko A, Miroshnyk I, Pietila LO, Haarala J, Salmia J, Sinervo K, Mirza S, van Veen B, Kolehmainen E, Nonappa YJ (2013) Cryst Growth Des 13:4877–4884

    Article  CAS  Google Scholar 

  24. Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ (2010) Cryst Growth Des 10:4401–4413

    Article  CAS  Google Scholar 

  25. Trask AV, Motherwell WDS, Jones W (2004) Chem Commun 890–891

  26. Lemmerer A, Bernstein J, Kahlenberg V (2010) CrystEngComm 12:2856–2864

    Article  CAS  Google Scholar 

  27. Caira MR, Bourne SA, Samsodien H, Engel E, Liebenberg W, Stieger N, Aucamp M (2012) CrystEngComm 14:2541–2551

    Article  CAS  Google Scholar 

  28. Hu Y, Gniado K, Erxleben A, McArdle P (2014) Cryst Growth Des 14:803–813

    Article  CAS  Google Scholar 

  29. Childs SL, Wood PA, Rodriguez-Hornedo N, Reddy LS, Hardcastle KI (2009) Cryst Growth Des 9:1869–1888

    Article  CAS  Google Scholar 

  30. Karki S, Friscic T, Jones W (2009) CrystEngComm 11:470–481

    Article  CAS  Google Scholar 

  31. Yan Y, Chen JM, Lu TB (2013) CrystEngComm 15:6457–6460

    Article  CAS  Google Scholar 

  32. Espinosa-Lara JC, Guzman-Villanueva D, Arenas-Garcia JI, Herrera-Ruiz D, Rivera-Islas J, Roman-Bravo P, Morales-Rojas H, Höpfl H (2013) Cryst Growth Des 13:169–185

    Article  CAS  Google Scholar 

  33. Félix-Sonda BC, Rivera-Islas J, Herrera-Ruiz D, Morales-Rojas H, Höpfl H (2014) Cryst Growth Des 14:1086–1102

    Article  Google Scholar 

  34. Kastelic J, Hodnik Z, Sket P, Plavec J, Lah N, Leban I, Pajk M, Planinsek O, Kikelj D (2010) Cryst Growth Des 10:4943–4953

    Article  CAS  Google Scholar 

  35. Trask AV, Motherwell WDS, Jones W (2006) Int J Pharm 320:114–123

    Article  CAS  Google Scholar 

  36. Robert JJ, Raj SB, Muthiah PT (2001) Acta Crystallog E57:o1206–o1208

    Google Scholar 

  37. Chadha R, Saini A, Khullar S, Jain DS, Mandal SK, Guru Row TN (2013) Cryst Growth Des 13:858–870

    Article  CAS  Google Scholar 

  38. Sládková V, Cibulková J, Eigner V, Šturc A, Kratochvíl B, Rohlíček J (2014) Cryst Growth Des 14:2931–2936

    Article  Google Scholar 

  39. Stanley N, Sethuraman V, Muthiah PT, Luger P, Weber M (2002) Cryst Growth Des 2:631–635

    Article  CAS  Google Scholar 

  40. Sanphui P, Tothadi S, Ganguly S, Desiraju GR (2013) Mol. Pharmaceutics 10:4687–4697

    Article  CAS  Google Scholar 

  41. Inouye S, Iitaka Y (1963) Bull Chem Soc Jap 36:1163–1168

    Article  CAS  Google Scholar 

  42. Zakharov BA, Losev EA, Kolesov BA, Drebushchak VA, Boldyreva EV (2012) Acta Crystallogr B 68:287–296

    Article  CAS  Google Scholar 

  43. Odiase I, Nicholson CE, Ahmad R, Cooper J, Yufit DS, Cooper SJ (2015) Acta Crystallogr C 71:276–283

    Article  CAS  Google Scholar 

  44. ** S, Zhao Y, Liu B, ** X, Zhang H, Wen X, Liu H, ** L, Wang D (2015) J Mol Struct 1099:601–615

    Article  CAS  Google Scholar 

  45. SAINT+, Version 6.45, Bruker AXS Inc., Madison, Wisconsin, USA, 2003

  46. Sheldrick GM (1997) SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen, Germany

  47. Sheldrick GM (2015) Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  48. Etter MC (1991) J Phys Chem 95:4601–4610

    Article  CAS  Google Scholar 

  49. Etter MC (1990) Acc Chem Res 23:120–126

    Article  CAS  Google Scholar 

  50. Etter MC, MacDonald JC, Bernstein J (1990) Acta Crystallogr B 46:256–262

    Article  Google Scholar 

  51. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Eng 34:1555–1573

    Article  CAS  Google Scholar 

  52. Thapa S, Draguta S, Sandhu B, Antipin MY, Timofeeva TV (2013) Acta Crystallogr E69:o670

    Google Scholar 

  53. Chao M, Schemp E, Rosenstein RD (1975) Acta Crystallogr B 31:2922–2924

    Article  Google Scholar 

  54. Draguta S, Khrustalev VN, Sandhu B, Antipin MY, Timofeeva TV (2012) Acta Crystallogr E68:o3466

    Google Scholar 

  55. Callear SK, Hursthouse MB, Threlfall TL (2010) CrystEngComm 12:898–908

    Article  CAS  Google Scholar 

  56. Hemamalini M, Fun HK (2010) Acta Crystallogr E66:o1964

    Google Scholar 

  57. Hemamalini M, Fun HK (2010) Acta Crystallogr E66:o2008–o2009

    Google Scholar 

  58. Aakeroy CB, Hussain I, Forbes S, Desper J (2007) CrystEngComm 9:46–54

    Article  CAS  Google Scholar 

  59. Edison B, Balasubramani K, Thanigaimani K, Khalib NC, Arshad S, Razak IA (2014) Acta Crystallogr E70:o857–o858

    Google Scholar 

  60. Yakovenko AA, Gallegos JH, Antipin MY, Masunov A, Timofeeva TV (2011) Cryst Growth Des 11:3964–3978

    Article  CAS  Google Scholar 

  61. Hemamalini M, Fun HK (2010) Acta Crystallogr E66:o1841–o1842

    Google Scholar 

  62. Chan HCS, Woollam GR, Wagner T, Schmidt MU, Lewis RA (2014) CrystEngComm 16:4365–4368

    Article  CAS  Google Scholar 

  63. Hutchins KM, Sumrak JC, Swenson DC, MacGillivray LR (2014) CrystEngComm 16:5762–5764

    Article  CAS  Google Scholar 

  64. Lawniczak P, Pogorzelec-Glaser K, Pawlaczyk C, Pietraszko A, Sczeniak L (2009) J Phys Condens Matter 21:345403 (9 pp)

  65. Tothadi S, Sanphui P, Desiraju GR (2014) Cryst Growth Des 14:5293–5302

    Article  CAS  Google Scholar 

  66. Aitipamula S, Chow PS, Tan RBH (2014) CrystEngComm 16:3451–3465

    Article  CAS  Google Scholar 

  67. Tothadi S (2014) CrystEngComm 16:7587–7597

    Article  CAS  Google Scholar 

  68. Frisch MJ et al. (20090 Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT

Download references

Acknowledgments

The authors are grateful for NSF support via DMR-0934212 and DMR-1523611 (PREM), and IIA-1301346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Timofeeva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draguta, S., Fonari, M.S., Bejagam, S.N. et al. Structural similarities and diversity in a series of crystalline solids composed of 2-aminopyridines and glutaric acid. Struct Chem 27, 1303–1315 (2016). https://doi.org/10.1007/s11224-016-0781-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0781-2

Keywords

Navigation