Log in

Computational studies of π–π interactions in dimers of heterosubstituted sumanenes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A computational study of dimers of heterosubstituted sumanenes has been carried out using a dispersion-corrected density functional theory method. In the heterosubstituted systems, the three bridging CH2 groups of sumanene have been replaced by O, NH, and S. For each dimer system, two motifs, staggered and eclipsed forms, were considered. The most stable geometry was the staggered stacked concave–convex motif where one monomer was rotated by 60° from the eclipsed configuration. The calculated binding energies and equilibrium distances of the staggered concave–convex dimers are predicted to be 20.1 kcal/mol and 3.7 Å for the parent sumanene molecule, 17.4 kcal/mol and 3.8 Å, 12.3 kcal/mol and 3.7 Å, and 16.6 kcal/mol and 3.7 Å for the NH-, O-, and S-substituted analogs, respectively. The binding energies of the dimers have been analyzed in terms of dipole–dipole contributions, dispersion contributions, and C–H···π interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruiz C, Garcia-Frutos EM, Hennrich G, Gomez-Lor BJ (2012) Phys Chem Lett 3:1428

    Article  CAS  Google Scholar 

  2. Mas-Torrent M, Rovira C (2008) Chem Soc Rev 37:827

    Article  CAS  Google Scholar 

  3. Segura JL, Martin N, Guldi DM (2005) Chem Soc Rev 34:31

    Article  CAS  Google Scholar 

  4. Wang Q, Ma D (2010) Chem Soc Rev 39:2387

    Article  CAS  Google Scholar 

  5. Nourmohammadian F, Wu T, Branda NR (2011) Chem Commun (Cambridge UK) 47:10954

    Article  CAS  Google Scholar 

  6. McQuade DT, Pullen AE, Swager TM (2000) Chem Rev (Washington DC) 100:2537

    Article  CAS  Google Scholar 

  7. Coropceanu V, Cornil J, Da SFDA, Olivier Y, Silbey R, Bredas J-L (2007) Chem Rev (Washington DC) 107:926

    Article  CAS  Google Scholar 

  8. Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM (2007) J Am Chem Soc 129:3842

    Article  CAS  Google Scholar 

  9. Mück-Lichtenfeld C, Grimme S, Kobryn L, Sygula A (2010) Phys Chem Chem Phys 12:7091

    Article  Google Scholar 

  10. Sygula A, Collier WE (2011) In: Petrukhina LA, Scott ET (eds) Fragments of fullerenes and carbon nanotubes: design synthesis, unusual reactions, and coordination chemistry (Chapter 1). Wiley, New York, pp 1–40

    Chapter  Google Scholar 

  11. Sygula A, Saebo S (2008) Int J Quantum Chem 109:65

    Article  Google Scholar 

  12. Janowski T, Pulay P, Karrunarathna AAS, Sygula A, Saebo S (2011) Chem Phys Lett 512:155

    Article  CAS  Google Scholar 

  13. Karaunarathna AAS, Saebo S (2014) Struct Chem 25:1831

    Article  Google Scholar 

  14. Tang ML, Okamoto T, Bao Z (2006) J Am Chem Soc 128:16002

    Article  CAS  Google Scholar 

  15. Briseno AL, Mannsfeld SCB, Lu X, **ong Y, Jenekhe SA, Bao Z, **a Y (2007) Nano Lett 7:668

    Article  CAS  Google Scholar 

  16. Roberts JD, Streitwieser A Jr, Regan CM (1952) J Am Chem Soc 74:4579

    Article  CAS  Google Scholar 

  17. Barth WE, Lawton RG (1966) J Am Chem Soc 88:380

    Article  CAS  Google Scholar 

  18. Lawton RG, Barth WE (1971) J Am Chem Soc 93:1730

    Article  CAS  Google Scholar 

  19. Sakurai T, Daiko T, Hirao T (2003) Science 187:1878

    Article  Google Scholar 

  20. Sakurai T, Daiko T, Sakane H, Amaya T, Hirao T (2005) J Am Chem Soc 124:10887

    Google Scholar 

  21. Imamura K, Takimiya K, Aso Y, Otsubo T (1999) Chem Commun 1859

  22. Higashibayashi S, Sakura H (2011) Chem Lett 40:122

    Article  CAS  Google Scholar 

  23. Sastry GN, Priyakumar UD (2001) J Chem Soc Perkin Trans 2:30

    Article  Google Scholar 

  24. Priyakumar UD, Sastry GN (2001) J Org Chem 66:6523

    Article  CAS  Google Scholar 

  25. Jaafar R, Pignedoli CAQ, Bussi G, Ait-Mansour K, Groening O, Amaya T, Hirao T, Fasel R, Ruffleux P (2014) J Am Chem Soc 136:13666

    Article  CAS  Google Scholar 

  26. Cauet E, Jacquemin D (2012) Chem Phys Lett 519–520:49

    Article  Google Scholar 

  27. Armakovic S, Armakovic SJ, Setrajcic JP, Holodkov V (2014) J Mol Model 20:2538

    Article  Google Scholar 

  28. Armakovic S, Armakovic SJ, Setrajcic JP, Dzambas D (2013) J Mol Model 19:1153

    Article  CAS  Google Scholar 

  29. Josa D, Rodriguez-Otero J, Cabaleiro-Lago EM, Santos LA, Ramalho TC (2014) J Phys Chem A 118:9521

    Article  CAS  Google Scholar 

  30. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  31. Grimme S (2004) J Comput Chem 25:146328

    Article  Google Scholar 

  32. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785

    Article  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  35. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  36. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  37. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  38. Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572

    Article  CAS  Google Scholar 

  39. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  40. Haddon RC, Scott LT (1986) Pure Appl Chem 58:137

    CAS  Google Scholar 

  41. Haddon RC (1988) Acc Chem Res 21:243

    Article  CAS  Google Scholar 

  42. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford, GB

    Google Scholar 

  43. Denis PA (2011) Chem Phys Lett 516:82

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saebo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunarathna, A.A.S., Saebo, S. Computational studies of π–π interactions in dimers of heterosubstituted sumanenes. Struct Chem 26, 1689–1695 (2015). https://doi.org/10.1007/s11224-015-0591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0591-y

Keywords

Navigation