Log in

Some Glimpses from Helioseismology at the Dynamics of the Deep Solar Interior

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Helioseismology has taught us a great deal about the stratification and kinematics of the solar interior, sufficient for us to embark upon dynamical studies more detailed than have been possible before. The most sophisticated studies to date have been the very impressive numerical simulations of the convection zone, from which, especially in recent years, a great deal has been learnt. Those simulations, and the seismological evidence with which they are being confronted, are reviewed elsewhere in this volume. Our understanding of the global dynamics of the radiative interior of the Sun is in a much more primitive state. Nevertheless, some progress has been made, and seismological inference has provided us with evidence of more to come. Some of that I summarize here, mentioning in passing hints that are pointing the way to the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Having deviated from its initial value by no more than 0.5 per cent.

  2. Yet hardly ever the flux of kinetic energy.

  3. Usually referred to as ‘heavy elements’, even though they include 3He.

  4. Rather than, for example, the solar abundance problem.

  5. Which is commonly doubted.

  6. Often, for computational convenience, Ω is expanded in orthogonal polynomials, such as Clebsch-Gordon coefficients (Ritzwoller and Lavely 1991).

  7. The oblateness Δv depends also on J 4 and the higher moments, but the additional contributions appear to be less than the observational uncertainty, so for clarity I do not take them explicitly into account here.

  8. In their paper, Fivian et al. (2008) actually claim a value that exceeds Δ Ω by about 2×10−7, which they offer as an estimate of Δ Φ , but their result was obtained with Dicke’s (1970) outdated underestimate of Δ Ω .

  9. Viscous stress operates also on the side walls, but there the boundary layer is not as thin as that at the bottom of the container, and removes negligible angular momentum (just as Bondi and Lyttleton had found, in the case of spin-down in a sphere, that negligible angular momentum is removed near the equator). The bottom boundary layer is thinner as a result of the vertical ‘rigidity’ imparted on the fluid immediately above by the vortex stretching (which is intimately related to a tendency towards local angular-momentum conservation) produced by the shear, and which is also responsible for the better-known Taylor-Proudman theorem for steady incompressible inviscid flow.

  10. And subsequently demonstrated it in the laboratory (unpublished) in a rotating beaker of water containing several layers of glass beads.

  11. Perhaps even in the face of the steep gradient of molecular weight (Huppert and Spiegel 1977) which had previously been regarded as isolating the angular momentum of the energy-generating core (Mestel 1953; Mestel 1957).

  12. Here I adopt the original Spiegel and Zahn (1992) definition of the tachocline: the gyroscopically pumped shear layer confined to only the stable region beneath the convection zone, despite the etymology of the appellation.

  13. And similar also to field intensities commonly discussed elsewhere in connection with the tachocline (e.g. Spruit 2002; Gilman and Cally 2007), although others (e.g. Gough and McIntyre 1998; Kitchatinov and Rüdiger 2007) have entertained weaker fields.

  14. The vertical component of the group velocity is directed oppositely to the phase velocity.

  15. As had both Kumar and Quataert (1997) and Zahn et al. (1997) earlier, in the mistaken belief that angular momentum transport by the waves would be in the reverse sense and would thus supply the reason for the observed uniform rotation of the radiative envelope.

References

  • L.A. Acevedo-Arreguin, P. Garaud, T.S. Wood, Dynamics of the solar tachocline—III. Numerical solutions of the Gough and McIntyre model. Mon. Not. R. Astron. Soc. 434, 720–741 (2013). doi:10.1093/mnras/stt1065

    Article  ADS  Google Scholar 

  • L. Ambronn, A.C.W. Schur, Die Messungen des Sonnendurchmessers an dem Repsold’schen 6-zoelligen Heliometer der Sternwarte zu Göttingen. Astron. Mitt. Koenig. Sternwarte Göttingen, 7:T (1905)

  • H.M. Antia, S. Basu, Revisiting the solar tachocline: average properties and temporal variations. Astrophys. J. Lett. 735, 45 (2011). doi:10.1088/2041-8205/735/2/L45

    Article  ADS  Google Scholar 

  • H.M. Antia, S. Basu, S.M. Chitre, Solar internal rotation rate and the latitudinal variation of the tachocline. Mon. Not. R. Astron. Soc. 298, 543–556 (1998). doi:10.1046/j.1365-8711.1998.01635.x

    Article  ADS  Google Scholar 

  • H.M. Antia, S.M. Chitre, D.O. Gough, On the magnetic field required for driving the observed angular-velocity variations in the solar convection zone. Mon. Not. R. Astron. Soc. 428, 470–475 (2013). doi:10.1093/mnras/sts040

    Article  ADS  Google Scholar 

  • T. Appourchaux, K. Belkacem, A.-M. Broomhall, W.J. Chaplin, D.O. Gough, G. Houdek, J. Provost, F. Baudin, P. Boumier, Y. Elsworth, R.A. García, B.N. Andersen, W. Finsterle, C. Fröhlich, A. Gabriel, G. Grec, A. Jiménez, A. Kosovichev, T. Sekii, T. Toutain, S. Turck-Chièze, The quest for the solar g modes. Astron. Astrophys. Rev. 18, 197–277 (2010). doi:10.1007/s00159-009-0027-z

    Article  ADS  Google Scholar 

  • R. Arlt, A. Sule, G. Rüdiger, Stability of toroidal magnetic fields in the solar tachocline. Astron. Astrophys. 461, 295–301 (2007). doi:10.1051/0004-6361:20065192

    Article  ADS  MATH  Google Scholar 

  • M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009). doi:10.1146/annurev.astro.46.060407.145222

    Article  ADS  Google Scholar 

  • A. Auwers, Der Sonnendurchmesser und der Venusdurchmesser nach den Beobachtungen an den Heliometern der deutschen Venus-Expeditionen. Astron. Nachr. 128, 361 (1891). doi:10.1002/asna.18911282002

    Article  ADS  Google Scholar 

  • J.N. Bahcall, R.K. Ulrich, Solar models, neutrino experiments, and helioseismology. Rev. Mod. Phys. 60, 297–372 (1988). doi:10.1103/RevModPhys.60.297

    Article  ADS  Google Scholar 

  • J.N. Bahcall, M.H. Pinsonneault, S. Basu, Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990–1012 (2001). doi:10.1086/321493

    Article  ADS  Google Scholar 

  • S.A. Balbus, J.F. Hawley, A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. Astrophys. J. 376, 214–233 (1991). doi:10.1086/170270

    Article  ADS  Google Scholar 

  • M.P. Baldwin, L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt, K. Sato, M. Takahashi, The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001). doi:10.1029/1999RG000073

    Article  ADS  Google Scholar 

  • N.J. Balmforth, Solar pulsational stability. Part Three—Acoustical excitation by turbulent convection. Mon. Not. R. Astron. Soc. 255, 639 (1992)

    Article  ADS  Google Scholar 

  • N.J. Balmforth, D.O. Gough, Mixing-length theory and the excitation of solar acoustic oscillations. Sol. Phys. 128, 161–193 (1990). doi:10.1007/BF00154155

    Article  ADS  Google Scholar 

  • S. Basu, Seismology of the base of the solar convection zone. Mon. Not. R. Astron. Soc. 288, 572–584 (1997)

    Article  ADS  Google Scholar 

  • S. Basu, H.M. Antia, A study of possible temporal and latitudinal variations in the properties of the solar tachocline. Mon. Not. R. Astron. Soc. 324, 498–508 (2001). doi:10.1046/j.1365-8711.2001.04364.x

    Article  ADS  Google Scholar 

  • S. Basu, H.M. Antia, Changes in solar dynamics from 1995 to 2002. Astrophys. J. 585, 553–565 (2003). doi:10.1086/346020

    Article  ADS  Google Scholar 

  • S. Basu, W.J. Chaplin, Y. Elsworth, R. New, A.M. Serenelli, Fresh insights on the structure of the solar core. Astrophys. J. 699, 1403–1417 (2009). doi:10.1088/0004-637X/699/2/1403

    Article  ADS  Google Scholar 

  • G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1953)

    MATH  Google Scholar 

  • F. Baudin, C. Barban, K. Belkacem, S. Hekker, T. Morel, R. Samadi, O. Benomar, M.-J. Goupil, F. Carrier, J. Ballot, S. Deheuvels, J. De Ridder, A.P. Hatzes, T. Kallinger, W.W. Weiss, Amplitudes and lifetimes of solar-like oscillations observed by CoRoT (Corrigendum). Red-giant versus main-sequence stars. Astron. Astrophys. 535, 1 (2011). doi:10.1051/0004-6361/201014037e

    Article  ADS  Google Scholar 

  • K. Belkacem, R. Samadi, M.J. Goupil, M.A. Dupret, A.S. Brun, F. Baudin, Stochastic excitation of nonradial modes. II. Are solar asymptotic gravity modes detectable? Astron. Astrophys. 494, 191–204 (2009). doi:10.1051/0004-6361:200810827

    Article  ADS  Google Scholar 

  • G. Berthomieu, M. Cribier (eds.), Inside the Sun, in IAU Colloq. 121: Inside the Sun, Astrophysics and Space Science Library, vol. 159 (1990)

  • G. Berthomieu, J. Provost, A. Rocca, A.J. Cooper, D.O. Gough, Y. Osaki, Sensitivity of five minute eigenfrequencies to the structure of the Sun, in Nonradial and Nonlinear Stellar Pulsation, ed. by H.A. Hill, W.A. Dziembowski Lecture Notes in Physics, vol. 125 (Springer, Berlin, 1980), pp. 307–312. doi:10.1007/3-540-09994-8-29

    Chapter  Google Scholar 

  • H. Bondi, R.A. Lyttleton, On the dynamical theory of the rotation of the Earth. Proc. Camb. Philos. Soc. 44, 345 (1948). doi:10.1017/S0305004100024361

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • A. Boury, M. Gabriel, A. Noels, R. Scuflaire, P. Ledoux, Vibrational instability of a 1 solar mass star towards non-radial oscillations. Astron. Astrophys. 41, 279–285 (1975)

    ADS  Google Scholar 

  • C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961). doi:10.1103/PhysRev.124.925

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • F.P. Bretherton, A.E. Spiegel, The effect of the convection zone on solar spin-down. Astrophys. J. Lett. 153, 77 (1968). doi:10.1086/180224

    Article  ADS  Google Scholar 

  • A.-M. Broomhall, W.J. Chaplin, Y. Elsworth, R. Simoniello, Quasi-biennial variations in helioseismic frequencies: can the source of the variation be localized? Mon. Not. R. Astron. Soc. 420, 1405–1414 (2012). doi:10.1111/j.1365-2966.2011.20123.x

    Article  ADS  Google Scholar 

  • A.S. Brun, J.-P. Zahn, Magnetic confinement of the solar tachocline. Astron. Astrophys. 457, 665–674 (2006). doi:10.1051/0004-6361:20053908

    Article  ADS  Google Scholar 

  • A.S. Brun, M.K. Browning, M. Dikpati, H. Hotta, A. Strugarek, Recent advances on solar global magnetism and variability. Space Sci. Rev. (2015). doi:10.1007/s11214-013-0028-0

    Google Scholar 

  • B.M. Byington, N.H. Brummell, J.M. Stone, D.O. Gough, Stoked nondynamos: sustaining field in magnetically non-closed systems. New J. Phys. 16(8), 083002 (2014). doi:10.1088/1367-2630/16/8/083002

    Article  ADS  Google Scholar 

  • E. Caffau, E. Maiorca, P. Bonifacio, R. Faraggiana, M. Steffen, H.-G. Ludwig, I. Kamp, M. Busso, The solar photospheric nitrogen abundance. Analysis of atomic transitions with 3D and 1D model atmospheres. Astron. Astrophys. 498, 877–884 (2009). doi:10.1051/0004-6361/200810859

    Article  ADS  Google Scholar 

  • S. Chandrasekhar, The stability of non-dissipative Couette flow in hydromagnetics. Proc. Natl. Acad. Sci. 46, 253–257 (1960). doi:10.1073/pnas.46.2.253

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • W.J. Chaplin, J. Christensen-Dalsgaard, Y. Elsworth, R. Howe, G.R. Isaak, R.M. Larsen, R. New, J. Schou, M.J. Thompson, S. Tomczyk, Rotation of the solar core from BiSON and LOWL frequency observations. Mon. Not. R. Astron. Soc. 308, 405–414 (1999). doi:10.1046/j.1365-8711.1999.02691.x

    Article  ADS  Google Scholar 

  • W.J. Chaplin, G. Houdek, Y. Elsworth, D.O. Gough, G.R. Isaak, R. New, On model predictions of the power spectral density of radial solar p modes. Mon. Not. R. Astron. Soc. 360, 859–868 (2005). doi:10.1111/j.1365-2966.2005.09041.x

    Article  ADS  Google Scholar 

  • P. Charbonneau, K.B. MacGregor, Solar spin-down with internal magnetic fields. Astrophys. J. Lett. 397, 63–66 (1992). doi:10.1086/186545

    Article  ADS  Google Scholar 

  • P. Charbonneau, K.B. MacGregor, Angular momentum transport in magnetized stellar radiative zones. II. The solar spin-down. Astrophys. J. 417, 762 (1993a). doi:10.1086/173357

    Article  ADS  Google Scholar 

  • P. Charbonneau, K.B. MacGregor, Solar spin-down with internal magnetic fields: erratum. Astrophys. J. Lett. 403, 87 (1993b). doi:10.1086/186728

    Article  ADS  Google Scholar 

  • P. Charbonneau, J. Christensen-Dalsgaard, R. Henning, R.M. Larsen, J. Schou, M.J. Thompson, S. Tomczyk, Helioseismic constraints on the structure of the solar tachocline. Astrophys. J. 527, 445–460 (1999). doi:10.1086/308050

    Article  ADS  Google Scholar 

  • J. Christensen-Dalsgaard, F.W.W. Dilke, D.O. Gough, The stability of a solar model to non-radial oscillations. Mon. Not. R. Astron. Soc. 169, 429–445 (1974)

    Article  ADS  Google Scholar 

  • J. Christensen-Dalsgaard, D.O. Gough, J.G. Morgan, Dirty solar models. Astron. Astrophys. 73, 121–128 (1979a)

    ADS  Google Scholar 

  • J. Christensen-Dalsgaard, D.O. Gough, J.G. Morgan, Erratum: “Dirty solar models” [Astron. Astrophys. 79, 121–128 (1979)]. Astron. Astrophys. 79, 260 (1979b)

    ADS  Google Scholar 

  • J. Christensen-Dalsgaard, T.L. Duvall Jr., D.O. Gough, J.W. Harvey, E.J. Rhodes Jr., Speed of sound in the solar interior. Nature 315, 378–382 (1985). doi:10.1038/315378a0

    Article  ADS  Google Scholar 

  • J. Christensen-Dalsgaard, W. Däppen, S.V. Ajukov, E.R. Anderson, H.M. Antia, S. Basu, V.A. Baturin, G. Berthomieu, B. Chaboyer, S.M. Chitre, A.N. Cox, P. Demarque, J. Donatowicz, W.A. Dziembowski, M. Gabriel, D.O. Gough, D.B. Guenther, J.A. Guzik, J.W. Harvey, F. Hill, G. Houdek, C.A. Iglesias, A.G. Kosovichev, J.W. Leibacher, P. Morel, C.R. Proffitt, J. Provost, J. Reiter, E.J. Rhodes Jr., F.J. Rogers, I.W. Roxburgh, M.J. Thompson, R.K. Ulrich, The current state of solar modeling. Science 272, 1286–1292 (1996). doi:10.1126/science.272.5266.1286

    Article  ADS  Google Scholar 

  • J. Christensen-Dalsgaard, M.J.P.F.G. Monteiro, M. Rempel, M.J. Thompson, A more realistic representation of overshoot at the base of the solar convective envelope as seen by helioseismology. Mon. Not. R. Astron. Soc. 414, 1158–1174 (2011). doi:10.1111/j.1365-2966.2011.18460.x

    Article  ADS  Google Scholar 

  • A. Clark Jr., J.H. Thomas, P.A. Clark, Solar differential rotation and oblateness. Science 164, 290–291 (1969). doi:10.1126/science.164.3877.290

    Article  ADS  Google Scholar 

  • T. Corbard, G. Berthomieu, J. Provost, P. Morel, Inferring the equatorial solar tachocline from frequency splittings. Astron. Astrophys. 330, 1149–1159 (1998)

    ADS  Google Scholar 

  • T. Corbard, L. Blanc-Féraud, G. Berthomieu, J. Provost, Non linear regularization for helioseismic inversions. Application for the study of the solar tachocline. Astron. Astrophys. 344, 696–708 (1999)

    ADS  Google Scholar 

  • T.G. Cowling, Magnetohydrodynamics (Hilger, Bristol, 1976)

    MATH  Google Scholar 

  • A. Cumming, W.C. Haxton, 3He transport in the Sun and the solar neutrino problem. Phys. Rev. Lett. 77, 4286–4289 (1996). doi:10.1103/PhysRevLett.77.4286

    Article  ADS  Google Scholar 

  • C. Damiani, J.P. Rozelot, S. Lefebvre, A. Kilcik, A.G. Kosovichev, A brief history of the solar oblateness. A review. J. Atmos. Sol.-Terr. Phys. 73, 241–250 (2011). doi:10.1016/j.jastp.2010.02.021

    Article  ADS  Google Scholar 

  • P.H. Diamond, S.-I. Itoh, K. Itoh, L.J. Silvers, β-Plane Mhd turbulence and dissipation in the solar tachocline, in The Solar Tachocline, ed. by D.W. Hughes, R. Rosner, N.O. Weiss (2007), p. 213

    Chapter  Google Scholar 

  • R.H. Dicke, The Sun’s rotation and relativity. Nature 202, 432–435 (1964). doi:10.1038/202432a0

    Article  ADS  MATH  Google Scholar 

  • R.H. Dicke, The solar spin-down problem. Astrophys. J. Lett. 149, 121 (1967). doi:10.1086/180072

    Article  ADS  Google Scholar 

  • R.H. Dicke, The solar oblateness and the gravitational quadrupole moment. Astrophys. J. 159, 1 (1970). doi:10.1086/150286

    Article  ADS  Google Scholar 

  • R.H. Dicke, H.M. Goldenberg, Solar oblateness and general relativity. Phys. Rev. Lett. 18, 313–316 (1967). doi:10.1103/PhysRevLett.18.313

    Article  ADS  Google Scholar 

  • R.H. Dicke, H.M. Goldenberg, The oblateness of the Sun. Astrophys. J. Suppl. 27, 131 (1974). doi:10.1086/190292

    Article  ADS  Google Scholar 

  • F.W.W. Dilke, D.O. Gough, The solar spoon. Nature 240, 262–294 (1972). doi:10.1038/240262a0

    Article  ADS  Google Scholar 

  • M.-A. Dupret, A. Grigahcène, R. Garrido, M. Gabriel, R. Scuflaire, Convection-pulsation coupling. II. Excitation and stabilization mechanisms in δ Sct and γ Dor stars. Astron. Astrophys. 435, 927–939 (2005). doi:10.1051/0004-6361:20041817

    Article  ADS  Google Scholar 

  • M.A. Dupret, C. Barban, M.-J. Goupil, R. Samadi, A. Grigahcène, M. Gabriel, Theoretical dam** rates and phase-lags for solar-like oscillations, in Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the Spherical Sun. ESA Special Publication, vol. 624 (2006), p. 97

    Google Scholar 

  • M.-A. Dupret, K. Belkacem, R. Samadi, J. Montalban, O. Moreira, A. Miglio, M. Godart, P. Ventura, H.-G. Ludwig, A. Grigahcène, M.-J. Goupil, A. Noels, E. Caffau, Theoretical amplitudes and lifetimes of non-radial solar-like oscillations in red giants. Astron. Astrophys. 506, 57–67 (2009). doi:10.1051/0004-6361/200911713

    Article  ADS  Google Scholar 

  • T.L. Duvall Jr., W.A. Dziembowski, P.R. Goode, D.O. Gough, J.W. Harvey, J.W. Leibacher, Internal rotation of the Sun. Nature 310, 22–25 (1984). doi:10.1038/310022a0

    Article  ADS  Google Scholar 

  • W. Dziembowski, Nonlinear mode coupling in oscillating stars. I—Second order theory of the coherent mode coupling. Acta Astron. 32, 147–171 (1982)

    ADS  Google Scholar 

  • W. Dziembowski, Resonant coupling between solar gravity modes. Sol. Phys. 82, 259–266 (1983). doi:10.1007/BF00145568

    Article  ADS  Google Scholar 

  • A.S. Eddington, The Internal Constitution of the Stars (Cambridge University Press, Cambridge, 1926)

    MATH  Google Scholar 

  • A. Einstein, Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes. Naturwissenschaften 14, 223–224 (1926). doi:10.1007/BF01510300

    Article  ADS  Google Scholar 

  • V.W. Ekman, Ark. Mat. Astron. Fys. 2(11), 1–52 (1905)

    Google Scholar 

  • J.R. Elliott, Aspects of the solar tachocline. Astron. Astrophys. 327, 1222–1229 (1997)

    ADS  Google Scholar 

  • J.R. Elliott, D.O. Gough, Calibration of the thickness of the solar tachocline. Astrophys. J. 516, 475–481 (1999). doi:10.1086/307092

    Article  ADS  Google Scholar 

  • A.N. Ellis, The base of the solar convection zone, in Theoretical Problems in Stellar Stability and Oscillations. Liege International Astrophysical Colloquia, vol. 25 (1984), pp. 290–292

    Google Scholar 

  • Y. Elsworth, R. Howe, G.R. Isaak, C.P. McLeod, B.A. Miller, R. New, S.J. Wheeler, D.O. Gough, Slow rotation of the Sun’s interior. Nature 376, 669–672 (1995). doi:10.1038/376669a0

    Article  ADS  Google Scholar 

  • M.D. Fivian, H.S. Hudson, R.P. Lin, H.J. Zahid, A large excess in apparent solar oblateness due to surface magnetism. Science 322, 560 (2008). doi:10.1126/science.1160863

    Article  ADS  Google Scholar 

  • E. Forgács-Dajka, K. Petrovay, Tachocline confinement by an oscillatory magnetic field. Sol. Phys. 203, 195–210 (2001). doi:10.1023/A:1013389631585

    Article  ADS  Google Scholar 

  • E. Forgács-Dajka, K. Petrovay, Dynamics of the fast solar tachocline. I. Dipolar field. Astron. Astrophys. 389, 629–640 (2002). doi:10.1051/0004-6361:20020586

    Article  ADS  Google Scholar 

  • D.C. Fritts, S.L. Vadas, O. Andreassen, Gravity wave excitation and momentum transport in the solar interior: implications for a residual circulation and lithium depletion. Astron. Astrophys. 333, 343–361 (1998)

    ADS  Google Scholar 

  • M. Gabriel, Solar oscillations: theory. Bull. Astron. Soc. India 24, 233 (1996)

    ADS  Google Scholar 

  • A.H. Gabriel, G. Grec, J. Charra, J.-M. Robillot, T. Roca Cortés, S. Turck-Chièze, R. Bocchia, P. Boumier, M. Cantin, E. Cespédes, B. Cougrand, J. Crétolle, L. Damé, M. Decaudin, P. Delache, N. Denis, R. Duc, H. Dzitko, E. Fossat, J.-J. Fourmond, R.A. García, D.O. Gough, C. Grivel, J.M. Herreros, H. Lagardère, J.-P. Moalic, P.L. Pallé, N. Pétrou, M. Sanchez, R.K. Ulrich, H.B. van der Raay, Global Oscillations at Low Frequency from the SOHO Mission (GOLF). Sol. Phys. 162, 61–99 (1995). doi:10.1007/BF00733427

    Article  ADS  Google Scholar 

  • G. Gamow, Does gravity change with time? Proc. Natl. Acad. Sci. 57, 187–193 (1967). doi:10.1073/pnas.57.2.187

    Article  ADS  Google Scholar 

  • P. Garaud, Propagation of a dynamo field in the radiative interior of the Sun. Mon. Not. R. Astron. Soc. 304, 583–588 (1999). doi:10.1046/j.1365-8711.1999.02338.x

    Article  ADS  Google Scholar 

  • P. Garaud, Dynamics of the solar tachocline—I. An incompressible study. Mon. Not. R. Astron. Soc. 329, 1–17 (2002). doi:10.1046/j.1365-8711.2002.04961.x

    Article  ADS  Google Scholar 

  • P. Garaud, C. Guervilly, The rotation rate of the solar radiative zone. Astrophys. J. 695, 799–808 (2009). doi:10.1088/0004-637X/695/2/799

    Article  ADS  Google Scholar 

  • R.J. Garcia Lopez, H.C. Spruit, Li depletion in F stars by internal gravity waves. Astrophys. J. 377, 268–277 (1991). doi:10.1086/170356

    Article  ADS  Google Scholar 

  • P.A. Gilman, P.S. Cally, Global Mhd instabilities of the tachocline, in The Solar Tachocline, ed. by D.W. Hughes, R. Rosner, N.O. Weiss (2007), p. 243

    Chapter  Google Scholar 

  • P. Goldreich, D.A. Keeley, Solar seismology. II—The stochastic excitation of the solar p modes by turbulent convection. Astrophys. J. 212, 243–251 (1977). doi:10.1086/155043

    Article  ADS  Google Scholar 

  • D.O. Gough, The internal structure of late-type main-sequence stars, in Astrophysics: Recent Progress and Future Possibilities, ed. by B. Gustafsson, P.E. Nissen (1990), pp. 13–50. K. Dan. Vidensk. Selsk., Mat-fys Medd, Mat-fys Medd 42(4)

    Google Scholar 

  • D.O. Gough, The pulsational stability of a convective atmosphere, in Geophys. Fluid Dynamics II. Woods Hole Oceanographic Institution (1965), pp. 49–84

    Google Scholar 

  • D.O. Gough, Random remarks on solar hydrodynamics, in IAU Colloq. 36: The Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona, ed. by R.M. Bonnet, P. Delache, G. de Bussac (de Bussac, Clermont-Ferrand, 1977a), pp. 3–36

    Google Scholar 

  • D.O. Gough, Theoretical predictions of variations in the solar output, in The Solar Output and Its Variation, ed. by O.R. White (1977b), p. 451

    Google Scholar 

  • D.O. Gough, The significance of solar oscillations, in Pleins Feux sur la Physique Solaire, ed. by S. Dumont, J. Roesch (1978), p. 81

    Google Scholar 

  • D.O. Gough, A new measure of the solar rotation. Mon. Not. R. Astron. Soc. 196, 731–745 (1981)

    Article  ADS  Google Scholar 

  • D.O. Gough, Theory of solar oscillations, in Future Missions in Solar, Heliospheric & Space Plasma Physics, ed. by E. Rolfe, B. Battrick ESA Special Publication, vol. 235 (1985), pp. 183–197

    Google Scholar 

  • D.O. Gough, Theory of solar variation, in Solar-Terrestrial Relationships and the Earth Environment in the Last Millennia, ed. by G. Cini Castagnoli (Soc. Italiana di Fisica, Bologna, 1988), pp. 90–132

    Google Scholar 

  • D.O. Gough, On Possible Origins of Relatively Short-Term Variations in the Solar Structure. Philos. Trans. R. Soc. Lond. Ser. A 330, 627–640 (1990a). doi:10.1098/rsta.1990.0043

    Article  ADS  Google Scholar 

  • D.O. Gough, Open questions, in IAU Colloq. 121: Inside the Sun, ed. by G. Berthomieu, M. Cribier Astrophysics and Space Science Library, vol. 159 (1990b), p. 451

    Chapter  Google Scholar 

  • D.O. Gough, On the composition of the solar interior: rapporteur paper 1. Space Sci. Rev. 85, 141–158 (1998). doi:10.1023/A:1005105224272

    Article  ADS  Google Scholar 

  • D.O. Gough, Helioseismology and solar neutrinos. Nucl. Phys. B, Proc. Suppl. 77, 81–88 (1999). doi:10.1016/S0920-5632(99)00401-6

    Article  ADS  Google Scholar 

  • D.O. Gough, How is solar activity influencing the structure of the Sun, in From Solar Min to Max: Half a Solar Cycle with SOHO, ed. by A. Wilson ESA Special Publication, vol. 508 (2002), pp. 577–592

    Google Scholar 

  • D.O. Gough, How oblate is the Sun? Science 337, 1611–1612 (2012a). doi:10.1126/science.1226988

    Article  ADS  Google Scholar 

  • D.O. Gough, Pattern formation in rapidly oscillating peculiar A stars. Geophys. Astrophys. Fluid Dyn. 106, 429–449 (2012b)

    Article  ADS  Google Scholar 

  • D.O. Gough, A.G. Kosovichev, Using helioseismic data to probe the hydrogen abundance in the solar core, in IAU Colloq. 121: Inside the Sun, ed. by G. Berthomieu, M. Cribier Astrophysics and Space Science Library, vol. 159 (1990), p. 327

    Chapter  Google Scholar 

  • D.O. Gough, M.E. McIntyre, Inevitability of a magnetic field in the Sun’s radiative interior. Nature 394, 755–757 (1998). doi:10.1038/29472

    Article  ADS  Google Scholar 

  • D.O. Gough, A.G. Kosovichev, T. Toutain, Constrained estimates of low-degree mode frequencies and the determination of the interior structure of the Sun. Sol. Phys. 157, 1–15 (1995). doi:10.1007/BF00680605

    Article  ADS  Google Scholar 

  • H.P. Greenspan, The Theory of Rotating Fluids (Cambridge University Press, Cambridge, 1969)

    MATH  Google Scholar 

  • H.P. Greenspan, L.N. Howard, On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17, 385–404 (1963). doi:10.1017/S0022112063001415

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • N. Gyenge, T. Baranyi, A. Ludmány, Migration and extension of solar active longitudinal zones. Sol. Phys. 289, 579–591 (2014). doi:10.1007/s11207-013-0424-3

    Article  ADS  Google Scholar 

  • S. Hanasoge, M.S. Miesch, M. Roth, J. Schou, M. Schüssler, M.J. Thompson, Solar dynamics, rotation, convection and overshoot. Space Sci. Rev. (2015). doi:10.1007/s11214-015

    Google Scholar 

  • J. Hartmann, Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. K. Dan. Vidensk. Selsk., Mat-fys Medd 15(6), 1–28 (1937)

    Google Scholar 

  • P.H. Haynes, M.E. McIntyre, T.G. Shepherd, C.J. Marks, K.P. Shine, On the ‘Downward Control’ of extratropical diabatic circulations by Eddy-induced mean zonal forces. J. Atmos. Sci. 48, 651–680 (1991). doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2

    Article  ADS  Google Scholar 

  • H.A. Hill, R.T. Stebbins, The intrinsic visual oblateness of the Sun. Astrophys. J. 200, 471–475 (1975). doi:10.1086/153813

    Article  ADS  Google Scholar 

  • J.R. Holton, The influence of viscous boundary layers on transient motions in a stratified rotating fluid. Part I. J. Atmos. Sci. 22, 402–411 (1965a). doi:10.1175/1520-0469(1965)022<0402:TIOVBL>2.0.CO;2

    Article  ADS  Google Scholar 

  • J.R. Holton, The influence of viscous boundary layers on transient motions in a stratified rotating fluid. Part II. J. Atmos. Sci. 22, 535–540 (1965b). doi:10.1175/1520-0469(1965)022<0535:TIOVBL>2.0.CO;2

    Article  ADS  Google Scholar 

  • J.R. Holton, R.S. Lindzen, An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29, 1076–1080 (1972). doi:10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2

    Article  ADS  Google Scholar 

  • G. Houdek, D.O. Gough, Modelling pulsation amplitudes of ξ Hydrae. Mon. Not. R. Astron. Soc. 336, 65–69 (2002). doi:10.1046/j.1365-8711.2002.06024.x

    Article  ADS  Google Scholar 

  • G. Houdek, N.J. Balmforth, J. Christensen-Dalsgaard, D.O. Gough, Amplitudes of stochastically excited oscillations in main-sequence stars. Astron. Astrophys. 351, 582–596 (1999)

    ADS  Google Scholar 

  • L.N. Howard, D.W. Moore, E.A. Spiegel, Solar spin-down problem. Nature 214, 1297 (1967)

    Article  ADS  Google Scholar 

  • R. Howe, Solar interior rotation and its variation. Living Rev. Sol. Phys. 6, 1 (2009). doi:10.12942/lrsp-2009-1

    Article  ADS  Google Scholar 

  • R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Dynamic variations at the base of the solar convection zone. Science 287, 2456–2460 (2000). doi:10.1126/science.287.5462.2456

    Article  ADS  Google Scholar 

  • R. Howe, R. Komm, F. Hill, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, J. Toomre, Rotation-rate variations at the tachocline: an update. J. Phys. Conf. Ser. 271(1), 012075 (2011). doi:10.1088/1742-6596/271/1/012075

    Article  ADS  Google Scholar 

  • D. Huber, T.R. Bedding, D. Stello, B. Mosser, S. Mathur, T. Kallinger, S. Hekker, Y.P. Elsworth, D.L. Buzasi, J. De Ridder, R.L. Gilliland, H. Kjeldsen, W.J. Chaplin, R.A. García, S.J. Hale, H.L. Preston, T.R. White, W.J. Borucki, J. Christensen-Dalsgaard, B.D. Clarke, J.M. Jenkins, D. Koch, Asteroseismology of red giants from the first four months of Kepler data: global oscillation parameters for 800 stars. Astrophys. J. 723, 1607–1617 (2010). doi:10.1088/0004-637X/723/2/1607

    Article  ADS  Google Scholar 

  • D.W. Hughes, R. Rosner, N.O. Weiss (eds.), The Solar Tachocline 2007

    Google Scholar 

  • H.E. Huppert, E.A. Spiegel, Penetration of the molecular-weight barrier. Astrophys. J. 213, 157–164 (1977). doi:10.1086/155140

    Article  ADS  Google Scholar 

  • C. Jordinson, D.O. Gough, The effect of the solar cycle on the resonant coupling of G modes, in IAU Colloq. 176: The Impact of Large-Scale Surveys on Pulsating Star Research, ed. by L. Szabados, D. Kurtz Astronomical Society of the Pacific Conference Series, vol. 203 (2000), p. 390

    Google Scholar 

  • A. Kasahara, W.M. Washington, General circulation experiments with a six-layer NCAR model, including orography, cloudiness and surface temperature calculations. J. Atmos. Sci. 28, 657–701 (1971). doi:10.1175/1520-0469(1971)028<0657:GCEWAS>2.0.CO;2

    Article  ADS  Google Scholar 

  • E.-J. Kim, K.B. MacGregor, Gravity wave-driven flows in the solar tachocline. Astrophys. J. Lett. 556, 117–120 (2001). doi:10.1086/322973

    Article  ADS  Google Scholar 

  • E.-J. Kim, K.B. MacGregor, Gravity wave-driven flows in the solar tachocline. II. Stationary flows. Astrophys. J. 588, 645–654 (2003). doi:10.1086/373943

    Article  ADS  Google Scholar 

  • L.L. Kitchatinov, G. Rüdiger, Magnetic field confinement by meridional flow and the solar tachocline. Astron. Astrophys. 453, 329–333 (2006). doi:10.1051/0004-6361:20064867

    Article  ADS  MATH  Google Scholar 

  • L.L. Kitchatinov, G. Rüdiger, Stability of toroidal magnetic fields in the solar tachocline and beneath. Astron. Nachr. 328, 1150 (2007). doi:10.1002/asna.200710859

    Article  ADS  MATH  Google Scholar 

  • E. Knobloch, W.J. Merryfield, Enhancement of diffusive transport in oscillatory flows. Astrophys. J. 401, 196–205 (1992). doi:10.1086/172052

    Article  ADS  Google Scholar 

  • A.G. Kosovichev, Helioseismic constraints on the gradient of angular velocity at the base of the solar convection zone. Astrophys. J. Lett. 469, 61 (1996). doi:10.1086/310253

    Article  ADS  Google Scholar 

  • J.R. Kuhn, R. Bush, M. Emilio, I.F. Scholl, The precise solar shape and its variability. Science 337, 1638–1640 (2012). doi:10.1126/science.1223231

    Article  ADS  Google Scholar 

  • P. Kumar, E.J. Quataert, Angular momentum transport by gravity waves and its effect on the rotation of the solar interior. Astrophys. J. Lett. 475, 143–146 (1997). doi:10.1086/310477

    Article  ADS  Google Scholar 

  • P. Kumar, S. Talon, J.-P. Zahn, Angular momentum redistribution by waves in the Sun. Astrophys. J. 520, 859–870 (1999). doi:10.1086/307464

    Article  ADS  Google Scholar 

  • P.J. Ledoux, E. Sauvenier-Goffin, The vibrational stability of white dwarfs. Astrophys. J. 111, 611 (1950). doi:10.1086/145305

    Article  ADS  Google Scholar 

  • S. Lefebvre, A.G. Kosovichev, J.P. Rozelot, Helioseismic test of nonhomologous solar radius changes with the 11 year activity cycle. Astrophys. J. Lett. 658, 135–138 (2007). doi:10.1086/515394

    Article  ADS  Google Scholar 

  • M.J. Lighthill, On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. Ser. A 211, 564–587 (1952). doi:10.1098/rspa.1952.0060

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • M.J. Lighthill, On sound generated aerodynamically. II. Turbulence as a source of sound. Proc. R. Soc. Lond. Ser. A 222, 1–32 (1954). doi:10.1098/rspa.1954.0049

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R.S. Lindzen, J.R. Holton, A theory of the quasi-biennial oscillation. J. Atmos. Sci. 25, 1095–1107 (1968). doi:10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2

    Article  ADS  Google Scholar 

  • J.E. Lovelock, L. Margulis, Homeostatic tendencies of the Earth’s atmosphere. Orig. Life 5, 93–103 (1974). doi:10.1007/BF00927016

    Article  ADS  Google Scholar 

  • J.E. Lovelock, A.J. Watson, The regulation of carbon dioxide and climate—Gaia or geochemistry. Planet. Space Sci. 30, 795–802 (1982). doi:10.1016/0032-0633(82)90112-X

    Article  ADS  Google Scholar 

  • S.H. Lubow, E.J. Rhodes Jr., R.K. Ulrich, Five minute oscillations as a probe of the solar interior, in Nonradial and Nonlinear Stellar Pulsation, ed. by H.A. Hill, W.A. Dziembowski Lecture Notes in Physics, vol. 125 (Springer, Berlin, 1980), pp. 300–306

    Chapter  Google Scholar 

  • K.B. MacGregor, T.M. Rogers, Reflection and ducting of gravity waves inside the Sun. Sol. Phys. 270, 417–436 (2011). doi:10.1007/s11207-011-9771-0

    Article  ADS  Google Scholar 

  • L. Margulis, J.E. Lovelock, Biological modulation of the Earth’s atmosphere. Icarus 21, 471 (1974). doi:10.1016/0019-1035(74)90150-X

    Article  ADS  Google Scholar 

  • P. Markey, R.J. Tayler, The adiabatic stability of stars containing magnetic fields. II. Poloidal fields. Mon. Not. R. Astron. Soc. 163, 77–91 (1973). doi:10.1093/mnras/163.1.77

    Article  ADS  Google Scholar 

  • S. Mathis, S. Talon, F.-P. Pantillon, J.-P. Zahn, Angular momentum transport in the Sun’s radiative zone by gravito-inertial waves. Sol. Phys. 251, 101–118 (2008). doi:10.1007/s11207-008-9157-0

    Article  ADS  Google Scholar 

  • J.M. Matthews, R. Kuschnig, D.B. Guenther, G.A.H. Walker, A.F.J. Moffat, S.M. Rucinski, D. Sasselov, W.W. Weiss, Erratum: No stellar p-mode oscillations in space-based photometry of Procyon. Nature 430, 921 (2004a). doi:10.1038/nature02812

    Article  ADS  Google Scholar 

  • J.M. Matthews, R. Kuschnig, D.B. Guenther, G.A.H. Walker, A.F.J. Moffat, S.M. Rucinski, D. Sasselov, W.W. Weiss, No stellar p-mode oscillations in space-based photometry of Procyon. Nature 430, 51–53 (2004b). doi:10.1038/nature02671

    Article  ADS  Google Scholar 

  • B.E. McDonald, R.H. Dicke, Solar oblateness and fluid spin-down. Science 158, 1562–1564 (1967). doi:10.1126/science.158.3808.1562

    Article  ADS  Google Scholar 

  • M.E. McIntyre, Solar tachocline dynamics: Eddy viscosity, anti-friction, or something in between? in Stellar Astrophysical Fluid Dynamics, ed. by M.J. Thompson, J. Christensen-Dalsgaard (2003), p. 111

    Chapter  Google Scholar 

  • M.E. McIntyre, The Quasi-Biennial Oscillation (QBO): some points about the terrestrial QBO and the possibility of related phenomena in the solar interior, in The Solar Engine and its Influence on Terrestrial Atmosphere and Climate, ed. by E. Nesme-Ribes (1994), p. 293

    Chapter  Google Scholar 

  • M.E. McIntyre, Magnetic confinement and the sharp tachopause, in The Solar Tachocline, ed. by D.W. Hughes, R. Rosner, N.O. Weiss (2007), p. 183

    Chapter  Google Scholar 

  • L. Mestel, Stellar Magnetism, 2nd edn. (Oxford University Press, London, 2012)

    Book  Google Scholar 

  • L. Mestel, Rotation and stellar evolution. Mon. Not. R. Astron. Soc. 113, 716 (1953)

    Article  ADS  MATH  Google Scholar 

  • L. Mestel, Meridional circulation in shell-source stars. Astrophys. J. 126, 550 (1957). doi:10.1086/146429

    Article  MathSciNet  ADS  Google Scholar 

  • L. Mestel, N.O. Weiss, Magnetic fields and non-uniform rotation in stellar radiative zones. Mon. Not. R. Astron. Soc. 226, 123–135 (1987)

    Article  ADS  Google Scholar 

  • M.S. Miesch, Numerical modeling of the solar tachocline. II. Forced turbulence with imposed shear. Astrophys. J. 586, 663–684 (2003). doi:10.1086/367616

    Article  ADS  Google Scholar 

  • J.L. Modisette, J.E. Novotny, Buoyancy and solar spin-down. Science 166, 872–874 (1969). doi:10.1126/science.166.3907.872

    Article  ADS  Google Scholar 

  • A. Noels, M. Gabriel, A. Boury, R. Scuflaire, P. Ledoux, Vibrational stability of g+ modes towards non-radial oscillations for solar models. Mem. Soc. R. Sci. Liege 8, 317–323 (1975)

    ADS  Google Scholar 

  • F.P. Pijpers, Helioseismic determination of the solar gravitational quadrupole moment. Mon. Not. R. Astron. Soc. 297, 76–80 (1998). doi:10.1046/j.1365-8711.1998.01801.x

    Article  ADS  Google Scholar 

  • R.A. Plumb, A.D. McEwan, The instability of a forced standing wave in a viscous stratified fluid: a laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci. 35, 1827–1839 (1978). doi:10.1175/1520-0469(1978)035<1827:TIOAFS>2.0.CO;2

    Article  MathSciNet  ADS  Google Scholar 

  • C.L. Poor, The figure of the Sun. Astrophys. J. 22, 103 (1905a). doi:10.1086/141245

    Article  ADS  Google Scholar 

  • C.L. Poor, The figure of the Sun. II. Astrophys. J. 22, 305 (1905b). doi:10.1086/141285

    Article  ADS  Google Scholar 

  • W.H. Press, Radiative and other effects from internal waves in solar and stellar interiors. Astrophys. J. 245, 286–303 (1981). doi:10.1086/158809

    Article  MathSciNet  ADS  Google Scholar 

  • W.H. Press, G.B. Rybicki, Enhancement of passive diffusion and suppression of heat flux in a fluid with time varying shear. Astrophys. J. 248, 751 (1981). doi:10.1086/159199

    Article  MathSciNet  ADS  Google Scholar 

  • E.J. Rhodes Jr., R.K. Ulrich, G.W. Simon, Observations of nonradial p-mode oscillations on the Sun. Astrophys. J. 218, 901–919 (1977). doi:10.1086/155745

    Article  ADS  Google Scholar 

  • M.H. Ritzwoller, E.M. Lavely, A unified approach to the helioseismic forward and inverse problems of differential rotation. Astrophys. J. 369, 557–566 (1991). doi:10.1086/169785

    Article  ADS  Google Scholar 

  • P.H. Roberts, An Introduction to Magnetohydrodynamics (Longmans, Green, New York, 1967)

    Google Scholar 

  • T.M. Rogers, K.B. MacGregor, On the interaction of internal gravity waves with a magnetic field—I. Artificial wave forcing. Mon. Not. R. Astron. Soc. 401, 191–196 (2010). doi:10.1111/j.1365-2966.2009.15618.x

    Article  ADS  Google Scholar 

  • T.M. Rogers, K.B. MacGregor, On the interaction of internal gravity waves with a magnetic field—II. Convective forcing. Mon. Not. R. Astron. Soc. 410, 946–962 (2011). doi:10.1111/j.1365-2966.2010.17493.x

    Article  ADS  Google Scholar 

  • T.M. Rogers, K.B. MacGregor, G.A. Glatzmaier, Non-linear dynamics of gravity wave driven flows in the solar radiative interior. Mon. Not. R. Astron. Soc. 387, 616–630 (2008). doi:10.1111/j.1365-2966.2008.13289.x

    Article  ADS  Google Scholar 

  • I.W. Roxburgh, Solar rotation and the perihelion advance of the planets. Icarus 3, 92–97 (1964). doi:10.1016/0019-1035(64)90049-1

    Article  ADS  Google Scholar 

  • G. Rüdiger, L.L. Kitchatinov, The slender solar tachocline: a magnetic model. Astron. Nachr. 318, 273 (1997)

    Article  ADS  MATH  Google Scholar 

  • G. Rüdiger, L.L. Kitchatinov, Structure and stability of the magnetic solar tachocline. New J. Phys. 9, 302 (2007). doi:10.1088/1367-2630/9/8/302

    Article  MATH  Google Scholar 

  • C. Sagan, G. Mullen, Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972). doi:10.1126/science.177.4043.52

    Article  ADS  Google Scholar 

  • H. Saio, Stability of nonradial g+-mode pulsations in 1 solar mass models. Astrophys. J. 240, 685–692 (1980). doi:10.1086/158275

    Article  ADS  Google Scholar 

  • J. Schou, H.M. Antia, S. Basu, R.S. Bogart, R.I. Bush, S.M. Chitre, J. Christensen-Dalsgaard, M.P. di Mauro, W.A. Dziembowski, A. Eff-Darwich, D.O. Gough, D.A. Haber, J.T. Hoeksema, R. Howe, S.G. Korzennik, A.G. Kosovichev, R.M. Larsen, F.P. Pijpers, P.H. Scherrer, T. Sekii, T.D. Tarbell, A.M. Title, M.J. Thompson, J. Toomre, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler imager. Astrophys. J. 505, 390–417 (1998). doi:10.1086/306146

    Article  ADS  Google Scholar 

  • J.A. Shercliff, A Textbook of Magnetohydrodynamics (Pergamon, Elmsford, 1965)

    Google Scholar 

  • H. Shibahashi, Y. Osaki, W. Unno, Nonradial g-mode oscillations and the stability of the Sun. Publ. Astron. Soc. Jpn. 27, 401–410 (1975)

    ADS  Google Scholar 

  • A. Skumanich, Time scales for CA II emission decay, rotational braking, and lithium depletion. Astrophys. J. 171, 565 (1972). doi:10.1086/151310

    Article  ADS  Google Scholar 

  • E.A. Spiegel, A history of solar rotation. NASA Spec. Publ. 300, 61 (1972)

    ADS  Google Scholar 

  • E.A. Spiegel, J.-P. Zahn, The solar tachocline. Astron. Astrophys. 265, 106–114 (1992)

    ADS  Google Scholar 

  • H.C. Spruit, Differential rotation and magnetic fields in stellar interiors. Astron. Astrophys. 349, 189–202 (1999)

    ADS  Google Scholar 

  • H.C. Spruit, Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002). doi:10.1051/0004-6361:20011465

    Article  ADS  Google Scholar 

  • R.F. Stein, Generation of acoustic and gravity waves by turbulence in an isothermal stratified atmosphere. Sol. Phys. 2, 385–432 (1967). doi:10.1007/BF00146490

    Article  ADS  Google Scholar 

  • D. Stello, H. Kjeldsen, T.R. Bedding, D. Buzasi, Oscillation mode lifetimes in ξ Hydrae: will strong mode dam** limit asteroseismology of red giant stars? Astron. Astrophys. 448, 709–715 (2006). doi:10.1051/0004-6361:20054016

    Article  ADS  Google Scholar 

  • A. Strugarek, A.S. Brun, J.-P. Zahn, Magnetic confinement of the solar tachocline: II. Coupling to a convection zone. Astron. Astrophys. 532, 34 (2011a). doi:10.1051/0004-6361/201116518

    Article  ADS  Google Scholar 

  • A. Strugarek, A.S. Brun, J.-P. Zahn, Magnetic confinement of the solar tachocline: the oblique dipole. Astron. Nachr. 332, 891 (2011b). doi:10.1002/asna.201111613

    Article  ADS  Google Scholar 

  • P.A. Sturrock, Solar neutrino variability and its implications for solar physics and neutrino physics. Astrophys. J. Lett. 688, 53–56 (2008). doi:10.1086/594993

    Article  ADS  Google Scholar 

  • L. Svalgaard, J.M. Wilcox, Long-term evolution of solar sector structure. Sol. Phys. 41, 461–475 (1975). doi:10.1007/BF00154083

    Article  ADS  Google Scholar 

  • S. Talon, P. Kumar, J.-P. Zahn, Angular momentum extraction by gravity waves in the Sun. Astrophys. J. Lett. 574, 175–178 (2002). doi:10.1086/342526

    Article  ADS  Google Scholar 

  • R.J. Tayler, Hydromagnetic instabilities of an ideally conducting fluid. Proc. Phys. Soc. B 70, 31–48 (1957). doi:10.1088/0370-1301/70/1/306

    Article  ADS  MATH  Google Scholar 

  • R.J. Tayler, The adiabatic stability of stars containing magnetic fields—I. Toroidal fields. Mon. Not. R. Astron. Soc. 161, 365 (1973)

    Article  ADS  Google Scholar 

  • G.I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A 219, 186–203 (1953). doi:10.1098/rspa.1953.0139

    Article  ADS  Google Scholar 

  • G.I. Taylor, The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. Ser. A 223, 446–468 (1954). doi:10.1098/rspa.1954.0130

    Article  ADS  Google Scholar 

  • E. Teller, On the change of physical constants. Phys. Rev. 73, 801–802 (1948). doi:10.1103/PhysRev.73.801

    Article  ADS  Google Scholar 

  • J. Toomre, M.J. Thompson, Prospects and challenges for helioseismology. Space Sci. Rev. (2015, this issue). doi:10.1007/s11214-015-0147-x

    Google Scholar 

  • W. Unno, Stellar radial pulsation coupled with the convection. Publ. Astron. Soc. Jpn. 19, 140 (1967)

    ADS  Google Scholar 

  • E.P. Velikhov, Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36, 1398–1404 (1959)

    Google Scholar 

  • T.S. Wood, M.E. McIntyre, Polar confinement of the Sun’s interior magnetic field by laminar magnetostrophic flow. J. Fluid Mech. 677, 445–482 (2011). doi:10.1017/jfm.2011.93

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • D.-R. **ong, Radiation-hydrodynamic equations for stellar oscillations. Astron. Astrophys. 209, 126–134 (1989)

    ADS  MATH  Google Scholar 

  • J.-P. Zahn, S. Talon, J. Matias, Angular momentum transport by internal waves in the solar interior. Astron. Astrophys. 322, 320–328 (1997)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Gough.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gough, D.O. Some Glimpses from Helioseismology at the Dynamics of the Deep Solar Interior. Space Sci Rev 196, 15–47 (2015). https://doi.org/10.1007/s11214-015-0159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0159-6

Keywords

Navigation