Log in

Solar Cycle 25 Prediction Using Length-to-Amplitude Relations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We propose a simple method based on two relations for predicting the maximum of an 11-year solar cycle. The first relation is the well-known Waldmeier rule that binds the amplitude of a cycle and the length of its ascending phase. The second one relates the length of a given cycle from minimum to minimum and the amplitude of the next one. Using corresponding linear regressions, we obtain for the amplitude of Cycle 25 in the scale of 13-month smoothed monthly total revised sunspot number \({\mathrm{SN}}_{\mathrm{max}}(25) = 181\pm 46\) and for the moment of the maximum \(t_{\mathrm{max}}(25) = 2024.2\pm 1.0\). Therefore, according to the prediction, Cycle 25 will be higher than the previous one (\({\mathrm{SN}}_{\mathrm{max}}(24) = 116\)) with probability 0.92.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

The datasets analysed during the current study are publicly available on resources referenced above. The datasets generated during the study are available from the author on reasonable request.

Notes

  1. https://www.weather.gov/news/190504-sun-activity-in-solar-cycle.

  2. The dataset is available at https://wwwbis.sidc.be/silso/DATA/SN_ms_tot_V2.0.txt.

References

  • Booth, R.J.: 2021, Limitations in the Hilbert transform approach to locating solar cycle terminators. Solar Phys. 296, 108.

    Article  ADS  Google Scholar 

  • Burud, D.S., Jain, R., Awasthi, A.K., Chaudhari, S., Tripathy, S.C., Gopalswamy, N., Chamadia, P., Kaushik, S.C., Vhatkar, R.: 2021, Spotless days and geomagnetic index as the predictors of solar cycle 25. Res. Astron. Astrophys. 21, 215.

    Article  ADS  Google Scholar 

  • Chernosky, E.J.: 1954, A relationship between the length and activity of sunspot cycles. Publ. Astron. Soc. Pac. 66(392), 241.

    Article  ADS  Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. Space Sci. Rev. 186, 35.

    Article  ADS  Google Scholar 

  • Courtillot, V., Lopes, F., Le Mouël, J.L.: 2021, On the prediction of solar cycles. Solar Phys. 296, 21.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2022, The solar cycle: a modified Gaussian function for fitting the shape of the solar cycle and predicting cycle 25. Astrophys. Space Sci. 367, 20.

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N., Ohl, A.I.: 1948, On 22-year cycle of the solar activity. Astron. Zh. 25, 18.

    Google Scholar 

  • Hathaway, D.H.: 2015, The solar cycle. Living Rev. Solar Phys. 12, 4.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177.

    Article  ADS  Google Scholar 

  • Ivanov, V.: 2021, Two links between parameters of 11-year cycle of solar activity. Geomagn. Aeron. 61, 1029.

    Article  ADS  Google Scholar 

  • Koutchmy, S., Tavabi, E., Noëns, J.-C., Wurmser, O., Filippov, B.: 2021, Predicting the height of the solar cycle 25 through polar regions activity. In: Siebert, A., et al. (eds.) Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, 238.

    Google Scholar 

  • Leamon, R.J., McIntosh, S.W., Chapman, S.C., Watkins, N.W.: 2021, Response to “Limitations in the Hilbert transform approach to locating solar cycle terminators” by R. Booth. Solar Phys. 296, 151.

    Article  ADS  Google Scholar 

  • Lu, J.Y., **ong, Y.T., Zhao, K., Wang, V., Li, J.Y., Peng, G.S., Sun, M.: 2022, A novel bimodal forecasting model for solar cycle 25. Astrophys. J. 924, 59.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Chapman, S.C., Leamon, R.J., Egeland, R., Watkins, N.W.: 2020, Overlap** magnetic activity cycles and the sunspot number: forecasting sunspot cycle 25 amplitude. Solar Phys. 295, 163.

    Article  ADS  Google Scholar 

  • Nandy, D.: 2021, Progress in solar cycle predictions: sunspot cycles 24-25 in perspective. Solar Phys. 296, 54.

    Article  ADS  Google Scholar 

  • Sachs, L.: 1972, Statistische Auswertungsmethoden, Springer, Berlin.

    Book  Google Scholar 

  • Solanki, S.K., Krivova, N.A., Schüssler, M., Fligge, M.: 2002, Search for a relationship between solar cycle amplitude and length. Astron. Astrophys. 396, 1029.

    Article  ADS  Google Scholar 

  • Prasad, A., Roy, S., Sarkar, A., Chandra Panja, S., Narayan Patra, S.: 2022, Prediction of solar cycle 25 using deep learning based long short-term memory forecasting technique. Adv. Space Res. 69, 798.

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1935, Neue Eigenschaften der Sonnenfleckenkurve. Astron. Mitt. Eidgenöss. Sternwarte Zür. 14, 105.

    ADS  Google Scholar 

  • Wu, S.-S., Qin, G.: 2021, Predicting Sunspot Numbers for Solar Cycles 25 and 26. E-print. ar**v.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir G. Ivanov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.G. Solar Cycle 25 Prediction Using Length-to-Amplitude Relations. Sol Phys 297, 92 (2022). https://doi.org/10.1007/s11207-022-02031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02031-3

Keywords

Navigation