Log in

Weakest Solar Cycle of the Space Age: A Study on Solar Wind–Magnetosphere Energy Coupling and Geomagnetic Activity

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar Cycle 24, from December 2008 to December 2019, is recorded to be the weakest in magnitude in the space age (after 1957). A comparative study of this cycle with Solar Cycles 20 through 23 is presented. It is found that Solar Cycle 24 is not only the weakest in solar activity, but also in average solar wind parameters and solar wind–magnetosphere energy coupling. This resulted in lower geomagnetic activity, lower numbers of high-intensity long-duration continuous auroral electrojet (\(AE\)) activity (HILDCAA) events and geomagnetic storms. The Solar Cycle 24 exhibited a \(\approx 54\) – \(61\%\) reduction in HILDCAA occurrence rate (per year), \(\approx 15\) – \(34\%\) reduction in moderate storms (\(-50~\text{nT} \geq Dst > -100~\text{nT}\)), \(\approx 49\) – \(75\%\) reduction in intense storms (\(-100~\text{nT} \geq Dst > -250~\text{nT}\)) compared to previous cycles, and no superstorms (\(Dst \leq -250~\text{nT}\)). Implications of the solar and geomagnetic weakening to space weather science and operations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Akasofu, S.-I.: 1964, The development of the auroral substorm. Planet. Space Sci. 12, 273. DOI.

    Article  ADS  Google Scholar 

  • Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and \(Dst\). J. Geophys. Res. 80, 4204. DOI.

    Article  ADS  Google Scholar 

  • Chapman, S., Ferraro, V.C.A.: 1931, A new theory of magnetic storms. Terr. Magn. Atmos. Electr. 36, 77. DOI.

    Article  MATH  Google Scholar 

  • Davis, T.N., Sugiura, M.: 1966, Auroral electrojet activity index \(AE\) and its universal time variations. J. Geophys. Res. 71, 785. DOI.

    Article  ADS  Google Scholar 

  • Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47. DOI.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T.: 2011, Statistical studies of geomagnetic storms with peak \(\mathrm{Dst} \leq -50~\text{nT}\) from 1957 to 2008. J. Atmos. Solar-Terr. Phys. 73, 1454. DOI.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Gonzalez, A.L.C., Prestes, A., Vieira, L.E.A., Dal Lago, A., Guarnieri, F.L., Schuch, N.J.: 2004, Long-term correlation between solar and geomagnetic activity. J. Atmos. Solar-Terr. Phys. 66, 1019. DOI.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: 2008, Interplanetary conditions causing intense geomagnetic storms (\(Dst < -100~\text{nT}\)) during Solar Cycle 23 (1996–2006). J. Geophys. Res. 113, 1. DOI.

    Article  Google Scholar 

  • Finch, I.D., Lockwood, M.L., Rouillard, A.P.: 2008, Effects of solar wind magnetosphere coupling recorded at different geomagnetic latitudes: separation of directly-driven and storage/release systems. Geophys. Res. Lett. 35, L21105. DOI.

    Article  ADS  Google Scholar 

  • Gonçalves, Í.G., Echer, E., Frigo, E.: 2020, Sunspot cycle prediction using warped Gaussian process regression. Adv. Space Res. 65, 677. DOI.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Gonzalez, A.L.C., Tsurutani, B.T.: 1990, Dual-peak solar cycle distribution of intense geomagnetic storms. Planet. Space Sci. 38, 181.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Mozer, F.S.: 1974, A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J. Geophys. Res. 79, 4186. DOI.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771. DOI.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E., Tsurutani, B.T., Gonzalez, A.L., Lago, A.: 2011, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158, 69. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Nunes, S., Yashiro, S., Howard, R.A.: 2004, Variability of solar eruptions during cycle 23. Adv. Space Res. 34, 391. DOI.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17, 901. DOI.

    Article  ADS  Google Scholar 

  • Grandin, M., Aikio, A.T., Kozlovsky, A.: 2019, Properties and geoeffectiveness of solar wind high-speed streams and stream interaction regions during Solar Cycles 23 and 24. J. Geophys. Res. 124, 3871. DOI.

    Article  Google Scholar 

  • Guarnieri, F.L., Tsurutani, B.T., Vieira, L.E.A., Hajra, R., Echer, E., Mannucci, A.J., Gonzalez, W.D.: 2018, A correlation study regarding the \(AE\) index and ACE solar wind data for Alfvénic intervals using wavelet decomposition and reconstruction. Nonlinear Process. Geophys. 25, 67. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Lakhina, G.S.: 2020, The complex space weather events of 2017 September. Astrophys. J. 899, 3. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Solar cycle dependence of High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events, relativistic electron predictors? J. Geophys. Res. 118, 5626. DOI.

    Article  Google Scholar 

  • Hajra, R., Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2014a, Superposed epoch analyses of HILDCAAs and their interplanetary drivers: solar cycle and seasonal dependences. J. Atmos. Solar-Terr. Phys. 121, 24. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2014b, Solar wind-magnetosphere energy coupling efficiency and partitioning: HILDCAAs and preceding CIR storms during Solar Cycle 23. J. Geophys. Res. 119, 2675. DOI.

    Article  Google Scholar 

  • Ingale, M., Janardhan, P., Bisoi, S.K.: 2019, Beyond the minisolar maximum of Solar Cycle 24: declining solar magnetic fields and the response of the terrestrial magnetosphere. J. Geophys. Res. 124, 6363. DOI.

    Article  Google Scholar 

  • Janardhan, P., Bisoi, S.K., Gosain, S.: 2010, Solar polar fields during cycles 21 – 23: correlation with meridional flows. Solar Phys. 267, 267. DOI.

    Article  ADS  Google Scholar 

  • Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K., Jose, L., Sridharan, R.: 2015, A 20 year decline in solar photospheric magnetic fields: inner-heliospheric signatures and possible implications. J. Geophys. Res. 120, 5306. DOI.

    Article  Google Scholar 

  • Janardhan, P., Fujiki, K., Ingale, M., Bisoi, S.K., Rout, D.: 2018, Solar cycle 24: an unusual polar field reversal. Astron. Astrophys. 618, A148. DOI.

    Article  ADS  Google Scholar 

  • Jiang, J., Cao, J.: 2018, Predicting solar surface large-scale magnetic field of cycle 24. J. Atmos. Solar-Terr. Phys. 176, 34. DOI.

    Article  ADS  Google Scholar 

  • Kakad, B., Kakad, A., Ramesh, D.S., Lakhina, G.S.: 2019, Diminishing activity of recent solar cycles (22 – 24) and their impact on geospace. J. Space Weather Space Clim. 9, A1. DOI.

    Article  ADS  Google Scholar 

  • Lamy, P.L., Floyd, O., Boclet, B., Wojak, J., Gilardy, H., Barlyaeva, T.: 2019, Coronal mass ejections over Solar Cycles 23 and 24. Space Sci. Rev. 215, 39. DOI.

    Article  ADS  Google Scholar 

  • Livingston, W., Penn, M.J., Svalgaard, L.: 2012, Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux. Astrophys. J. 757, L8. DOI.

    Article  ADS  Google Scholar 

  • Marques de Souza, A., Echer, E., Bolzan, M.J.A., Hajra, R.: 2018, Cross-correlation and cross-wavelet analyses of the solar wind IMF \(B_{Z}\) and auroral electrojet index AE coupling during HILDCAAs. Ann. Geophys. 36, 205. DOI.

    Article  ADS  Google Scholar 

  • Mendes, O., Domingues, M.O., Echer, E., Hajra, R., Menconi, V.E.: 2017, Characterization of high-intensity, long-duration continuous auroral activity (HILDCAA) events using recurrence quantification analysis. Nonlinear Process. Geophys. 24, 407. DOI.

    Article  ADS  Google Scholar 

  • Nakagawa, Y., Nozawa, S., Shinbori, A.: 2019, Relationship between the low-latitude coronal hole area, solar wind velocity, and geomagnetic activity during Solar Cycles 23 and 24. Earth Planets Space 71, 24. DOI.

    Article  ADS  Google Scholar 

  • Obridko, V.N., Ivanov, E.V., Özgüç, A., Kilcik, A., Yurchyshyn, V.B.: 2012, Coronal mass ejections and the index of effective solar multipole. Solar Phys. 281, 779. DOI.

    Article  ADS  Google Scholar 

  • Ohtani, S.: 2001, Substorm trigger processes in the magnetotail: recent observations and outstanding issues. Space Sci. Rev. 95, 347. DOI.

    Article  ADS  Google Scholar 

  • Perreault, P., Akasofu, S.-I.: 1978, A study of geomagnetic storms. Geophys. J. Roy. Astron. Soc. 54, 547. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V., Cliver, E.W.: 2002, Sources of geomagnetic activity during nearly three solar cycles (1972 – 2000). J. Geophys. Res. 107, SSH 8-1. DOI.

    Article  Google Scholar 

  • Rostoker, G.: 1972, Geomagnetic indices. Rev. Geophys. 10, 935. DOI.

    Article  ADS  Google Scholar 

  • Sasikumar Raja, K., Janardhan, P., Bisoi, S.K., Ingale, M., Subramanian, P., Fujiki, K., Maksimovic, M.: 2019, Global solar magnetic field and interplanetary scintillations during the past four solar cycles. Solar Phys. 294, 123. DOI.

    Article  ADS  Google Scholar 

  • Scolini, C., Messerotti, M., Poedts, S., Rodriguez, L.: 2018, Halo coronal mass ejections during Solar Cycle 24: reconstruction of the global scenario and geoeffectiveness. J. Space Weather Space Clim. 8, A09. DOI.

    Article  ADS  Google Scholar 

  • Shue, J.-H., Chao, J.-K.: 2013, The role of enhanced thermal pressure in the earthward motion of the Earth’s magnetopause. J. Geophys. Res. 118, 3017. DOI.

    Article  Google Scholar 

  • Souza, A.M., Echer, E., Bolzan, M.J.A., Hajra, R.: 2016, A study on the main periodicities in interplanetary magnetic field Bz component and geomagnetic AE index during HILDCAA events using wavelet analysis. J. Atmos. Solar-Terr. Phys. 149, 81. DOI.

    Article  ADS  Google Scholar 

  • Sugiura, M.: 1964, Hourly values of equatorial Dst for the IGY. Ann. Int. Geophys. Year 35, 9.

    Google Scholar 

  • Syed Ibrahim, M., Joshi, B., Cho, K.-S., Kim, R.-S., Moon, Y.-J.: 2019, Interplanetary coronal mass ejections during Solar Cycles 23 and 24: Sun–Earth propagation characteristics and consequences at the near-Earth region. Solar Phys. 294, 54. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2011, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of mid latitude small coronal holes, low IMF \(B_{Z}\) variances, low solar wind speeds and low solar magnetic fields. Ann. Geophys. 29, 839. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: 1987, The cause of high-intensity long-duration continuous \(AE\) activity (HILDCAAs): interplanetary Alfvén wave trains. Planet. Space Sci. 35, 405. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Lakhina, G.S., Hajra, R.: 2020, The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are. Nonlinear Process. Geophys. 27, 75. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Meng, C.-I.: 1972, Interplanetary magnetic-field variations and substorm activity. J. Geophys. Res. 77, 2964. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I., Smith, E.J.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978 – 1979). J. Geophys. Res. 93, 8519. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Lee, Y.T.: 1992, Great magnetic storms. Geophys. Res. Lett. 19, 73. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111, A07S01. DOI.

    Article  Google Scholar 

  • Tsurutani, B.T., Hajra, R., Echer, E., Lakhina, G.S.: 2019, Comment on “First observation of mesosphere response to the solar wind high-speed streams” by W. Yi et al. J. Geophys. Res. 124, 8165. DOI.

    Article  Google Scholar 

  • Upton, L.A., Hathaway, D.H.: 2018, An updated Solar Cycle 25 prediction with AFT: the modern minimum. Geophys. Res. Lett. 45, 8091. DOI.

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 2017, Surface flux transport and the evolution of the Sun’s polar fields. Space Sci. Rev. 210, 351. DOI.

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, R.A.: 1994, The solar cycle variation of coronal mass ejections and the solar wind mass flux. J. Geophys. Res. 99, 4201. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is funded by the Science and Engineering Research Board (SERB), a statutory body of the Department of Science and Technology (DST), Government of India through a Ramanujan Fellowship. I would like to thank Prof. Bruce T. Tsurutani for helpful scientific discussions. I also thank the reviewer for extremely valuable suggestions that substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar Hajra.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajra, R. Weakest Solar Cycle of the Space Age: A Study on Solar Wind–Magnetosphere Energy Coupling and Geomagnetic Activity. Sol Phys 296, 33 (2021). https://doi.org/10.1007/s11207-021-01774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01774-9

Keywords

Navigation