Log in

Inference in generalized exponential O–U processes with change-point

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

In this paper, we consider an inference problem in generalized exponential Ornstein–Uhlenbeck processes with change-point in the context where the dimensions of the drift parameter are unknown. The proposed method generalizes the work in recent literature for which the change-point has never been considered. Thus, in addition to taking care of possible chock, we study the asymptotic properties of the unrestricted estimator, the restricted estimator, and shrinkage estimators for the drift parameters. We also derive an asymptotic test for change-point detection and we establish the asymptotic distributional risk of the proposed estimators as well as their relative efficiency. Further, we prove that the proposed methods improve the goodness-of-fit. Finally, we present the simulation results which corroborate the theoretical findings and we analyze a financial market data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen F, Mamon R, Nkurunziza S (2018) Inference for a change-point problem under a generalised Ornstein–Uhlenbeck setting. Ann Inst Stat Math 70(4):807–853

    Article  MathSciNet  Google Scholar 

  • Chen F, Mamon R, Nkurunziza S (2020) Inference for a change-point problem under an OU setting with unequal and unknown volatilities. Can J Stat 48(1):62–78

    Article  MathSciNet  CAS  Google Scholar 

  • Chen S (2010) Modelling the dynamics of commodity prices for investment decisions under uncertainty. PhD thesis, University of Waterloo

  • Dehling H, Franke B, Kott T (2010) Drift estimation for a periodic mean reversion process. Stat Infer Stoch Process 13(3):175–192

    Article  MathSciNet  Google Scholar 

  • Dehling H, Franke B, Kott T, Klperger R (2014) Change point testing for the drift parameters of a periodic mean reversion process. Stat Infer Stoch Process 17:1–18

    Article  MathSciNet  Google Scholar 

  • Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press

  • Lyu Y., Nkurunziza S. (2023) Inference in generalized exponential O–U processes. Statistical Inference for Stochastic Processes; https://doi.org/10.1007/s11203-023-09291-1 (In press)

  • Nkurunziza S, Zhang PP (2018) Estimation and testing in generalized mean-reverting processes with change-point. Stat Infer Stoch Process 21(1):191–215

    Article  MathSciNet  Google Scholar 

  • Schwartz ES (1997) The stochastic behavior of commodity prices: implications for valuation and hedging. J Financ 52(3):923–973

    Article  Google Scholar 

Download references

Funding

This study was funded by Natural Sciences and Engineering Research Council of Canada (Grant Number RGPIN-2019-04464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sévérien Nkurunziza.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proofs of technical results and other important results

Appendix A: Proofs of technical results and other important results

Proposition A.1

Suppose that Assumptions 14 hold, we have

$$\begin{aligned}{} & {} \frac{1}{T}\left( \sum \limits _{{i}\in {\mathbb {N}}[0,sT]}({Z_{1i}^{\top }(p_{0})Z_{1i}(p_{0}))}/(t_{i+1}-t_{i}), \sum \limits _{{i}\in {\mathbb {N}}[sT,T]}{Z_{2i}^{\top }(p_{0})Z_{2i}(p_{0})}/(t_{i+1}-t_{i})\right) \nonumber \\{} & {} \quad \xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m/2}} \left( s\varvec{{\Sigma }}_{1},(1-s)\varvec{{\Sigma }}_{2}\right) . \end{aligned}$$
(A.1)

Proof

The proof follows from the triangle inequality and Proposition 2.8 along with Proposition 4.1 in Lyu and Nkurunziza (2023). This completes the proof. \(\square \)

Let \(\gamma _{1}(s,T)\) be the smallest eigenvalue of matrix \(\displaystyle \sum \nolimits _{{i}\in {\mathbb {N}}[0,sT]}{Z_{1i}^{\top }(p)Z_{1i}(p)}/((t_{i+1}-t_{i})T)\) and \(\gamma _{2}(s,T)\) be the smallest eigenvalue of matrix \(\sum \nolimits _{{i}\in {\mathbb {N}}[sT,T]}{Z_{2i}^{\top }(p)Z_{2i}(p)}/((t_{i+1}-t_{i})T)\) and let \(\gamma _{k}\) be the smallest eigenvalue of \(\Sigma _{k}\), for \(k=1,2\).

Lemma A.1

If Assumptions 14 hold, then \(\gamma _{1}(s,T)\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{\mathrm{{P}}}s\gamma _{1} \text{ and } \gamma _{2}(s,T)\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{\mathrm{{P}}}(1-s)\gamma _{2}\).

Proof

From Proposition A.2 of Lyu and Nkurunziza (2023) and Proposition A.1 along with the fact that \(\varvec{{\Sigma }}_{1}\), \(\varvec{{\Sigma }}_{2}\) are positive definite matrices, we get \(\gamma _{1}(s,T)\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{\mathrm{{P}}}\gamma _{1}(s)=s\gamma _{1}\) with \(\gamma _{1}>0\), and \(\gamma _{2}(s,T)\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{\mathrm{{P}}}(1-s)\gamma _{2}\), with \(\gamma _{2}>0\). \(\square \)

Let \(\hat{\varvec{{\mu }}}_{j}(p_{*}+)=(\hat{\mu _{j1}},{\hat{\mu }}_{j2},\ldots ,{\hat{\mu }}_{jp_{*}},0_{p_{*}+1},\) \(\ldots ,0_{p},{\hat{\alpha }}_{j})^{\top },\) \(j=1,2\). We derive the following lemma, which is useful in proving that the information criterion \(\textrm{IC}(c,p)\) reaches its minimum value at the exact dimension \((c^{0},p_{0})\).

Lemma A.2

Suppose that Assumption 14 hold and suppose that at least one of the parameters, say \(\mu _{ji},~(\mu _{ji}\ne 0),~ p_{*}<i\leqslant p,j=1,2\), cannot be consistently estimated, then for large T,

$$\begin{aligned} \sum \limits _{i\in {\mathbb {N}}[0,sT]}\left( {Z_{1i}(p)}(\varvec{{\mu }}_{1}(p)-\hat{\varvec{{\mu }}}_{1}(p_{*}+))\right) ^{2}/((t_{i+1}-t_{i})T)\geqslant s\gamma _{1}\left| \mu _{1i}\right| ^{2}>0,\\ \sum \limits _{i\in {\mathbb {N}}[sT,T]}\left( {Z_{2i}(p)}(\varvec{{\mu }}_{2}(p)-\hat{\varvec{{\mu }}}_{2}(p_{*}+))\right) ^{2}/((t_{i+1}-t_{i})T)\geqslant (1-s)\gamma _{2}\left| \varvec{{\mu }}_{2i}\right| ^{2}>0, \end{aligned}$$

with positive probability.

Proof

For the process on the observed interval [0, sT], if there is at least one parameter was not consistently estimated, say \(\mu _{1i},~(\mu _{1i}\ne 0),~ p_{*}<i\leqslant p\). We have

$$\begin{aligned}{} & {} \frac{1}{T}\sum \limits _{i\in {\mathbb {N}}[0,sT]}\left( {Z_{1i}(p)}(\varvec{{\mu }}_{1}(p)-\hat{\varvec{{\mu }}}_{1}(p_{*}+))\right) ^{2}/(t_{i+1}-t_{i}) \\{} & {} \quad =(\varvec{{\mu }}_{1}(p)-\hat{\varvec{{\mu }}}_{1}(p_{*}+))^{\top }\left[ \frac{1}{T}\sum \limits _{i\in {\mathbb {N}}[0,sT]}{Z_{1i}^{\top }(p)Z_{1i}(p)}/(t_{i+1}-t_{i})\right] (\varvec{{\mu }}_{1}(p)-\hat{\varvec{{\mu }}}_{1}(p_{*}+)) \\{} & {} \quad \geqslant \gamma _{1}(s,T)||\varvec{{\mu }}_{1}(p)-\hat{\varvec{{\mu }}}_{1}(p_{*}+)||^{2}\\{} & {} \quad =\gamma _{1}(s,T)\left( \sum \limits _{i=1}^{p_{*}}({\hat{\mu }}_{ji}^{(1)} -\mu _{ji}^{(1)})^{2} +\sum \limits _{i=p_{*}+1}^{p_{0}}(\mu _{ji}^{(1)}-0)^{2}+({\hat{\alpha }}_{1}-\alpha _{1})^{2}\right) . \end{aligned}$$

Then, \(\sum \nolimits _{i\in {\mathbb {N}}[0,sT]}\left( {Z_{1i}(p)}(\varvec{{\mu }}_{1}(p)-\hat{\varvec{{\mu }}}_{1}(p_{*}+))\right) ^{2}/T \geqslant \gamma _{1}(s,T)\left| \mu _{1i}\right| ^{2},~~p_{*}\leqslant i\leqslant p_{0}\). By the proof of Lemma A.1, \(\gamma _{1}(s,T)\left| \mu _{1i}\right| ^{2}\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{P}s\gamma _{1}\left| \mu _{1i}\right| ^{2}>0.\) By using the same techniques, we prove the second inequality. This completes the proof. \(\square \)

Before presenting this important result, we derive first the following propositions and lemmas, which play a crucial role in establishing this result. Note that Lemmas A.1 and  A.2 are based on the exact rate of the change-point \(s=s^{0}\), while Propositions A.3A.6 are based on \({\hat{s}}\) which is an estimator of s. Next, to emphasize the parameter dimension p in our notations, let W(sTp) be the vector W(sT) with dimension p and Q(sTp) be the matrix Q(sTp) with size \(2(p+1)\times 2(p+1)\). Let \(W_{[0,sT]}(p)\) be the vector \(W_{[0,sT]}(s)\) with dimension p and \(Q_{[0,sT]}(p)\) be the matrix \(Q_{[0,sT]}\) with size \((p+1)\times (p+1)\). We derive the following result which is crucial in proving the consistency of \({\hat{s}}\).

Proposition A.2

If Assumptions 14 hold, then, (i) \(\left| \left| W(s,T,p)\right| \right| =O_{\mathrm{{P}}}(\sqrt{T}\textrm{log}^{a^{*}}(T))\) and (ii)

$$\begin{aligned} \left( \left| \left| \sum \limits _{i\in {\mathbb {N}}[0,sT]}\varepsilon _{i}{Z_{1i}(p)}/(t_{i+1}-t_{i})\right| \right| , \left| \left| \sum \limits _{i\in {\mathbb {N}}[sT,T]}\!\!\varepsilon _{i}{Z_{2i}(p)}/(t_{i+1}-t_{i})\right| \right| \right) \!=\!O_{\mathrm{{P}}}(\sqrt{T}\,\textrm{log}^{\textit{a}^{*}}(\textit{T})),\nonumber \\ \end{aligned}$$
(A.2)

for some \(0<a^{*}<{\varvec{a}}/2\).

Proof

The proof Part (i) is similar to that Proposition 4.3 in Lyu and Nkurunziza (2023) and the proof of Part (ii) is similar to that of Proposition 4.4 in Lyu and Nkurunziza (2023). \(\square \)

Proof of Proposition 3.1

Let \(\textrm{SSE}_{1}=\displaystyle \textrm{SSE}({\hat{s}},{\hat{p}},\hat{\varvec{{\theta }}})/N\), and \(\textrm{SSE}_{2}=\displaystyle \textrm{SSE}(s^{0},p_{0},\hat{\varvec{{\theta }}}_{0})/N\), where \(\hat{\varvec{{\theta }}}\) is the estimator based on the estimation of the change point and \(\hat{\varvec{{\theta }}}_{0}\) is the estimator based on the true change point, denoted by \(s^{0}\). Since we have \(\textrm{SSE}_{1}\leqslant \textrm{SSE}_{2}\) with probability 1, it remains to show that if the change point is not consistently estimated, \(\textrm{SSE}_{1}> \textrm{SSE}_{2}\) with positive probability yielding a contradiction. Indeed, if the change point is not consistently estimated, we have \(|{\hat{s}}T-s^{0}T|>\eta T\), for some constant \(0<\eta <1\). Without loss of generality, we assume that \(0<s^{0}T<{\hat{s}}T<T\). Let \({\hat{Y}}_{i}(p,s)\) be the predicted value of \(Y_{i}\) based on the parameter p and s and \(\hat{\varvec{{\theta }}}(p,s)\) be the estimator of \(\varvec{\theta }\) based on the parameter p and s. Then,

$$\begin{aligned}{} & {} \textrm{SSE}_{1}-\textrm{SSE}_{2} =\left( \frac{1}{N}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \frac{{\hat{Y}}_{i}({\hat{p}},{\hat{s}})}{\Delta _{N}}-\frac{Y_{i}}{\Delta _{N}}\right) ^{2}\right. \nonumber \\{} & {} \quad \left. -\frac{1}{N}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \frac{{\hat{Y}}_{i}(p_{0},s^{0})}{\Delta _{N}}-\frac{Y_{i}}{\Delta _{N}}\right) ^{2}\right) {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}} \end{aligned}$$
(A.3)
$$\begin{aligned}{} & {} \quad +\left( \frac{1}{N}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \frac{{\hat{Y}}_{i}({\hat{p}},{\hat{s}})}{\Delta _{N}}-\frac{Y_{i}}{\Delta _{N}}\right) ^{2}-\frac{1}{N}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \frac{{\hat{Y}}_{i}(p_{0},s^{0})}{\Delta _{N}}-\frac{Y_{i}}{\Delta _{N}}\right) ^{2}\right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}\nonumber \\ \end{aligned}$$
(A.4)
$$\begin{aligned}{} & {} \quad +\left( \frac{1}{N}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \frac{{\hat{Y}}_{i}({\hat{p}},{\hat{s}})}{\Delta _{N}}-\frac{Y_{i}}{\Delta _{N}}\right) ^{2}-\frac{1}{N}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \frac{{\hat{Y}}_{i}(p_{0},s^{0})}{\Delta _{N}}-\frac{Y_{i}}{\Delta _{N}}\right) ^{2}\right) {\mathbb {I}}_{\{{\hat{p}}<p_{0}\}}.\nonumber \\ \end{aligned}$$
(A.5)

Note that \(T=N\Delta _{N},Y_{i}=Z_{i}(p_{0})\varvec{{\theta }}(p_{0})+\varepsilon _{i}\), we have

$$\begin{aligned}{} & {} (A.3) =(\hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+))^{\top }\frac{1}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]} \frac{{{\mathcal {Z}}_{i}^{\top }({\hat{p}}){\mathcal {Z}}_{i}({\hat{p}})}}{\Delta _{N}}(\hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+)) {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}} \\{} & {} \quad -(\hat{\varvec{{\theta }}}(p_{0},s_{0})-\varvec{{\theta }}(p_{0}))^{\top }\frac{1}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]} \frac{{{\mathcal {Z}}_{i}^{\top }(p_{0}){\mathcal {Z}}_{i}(p_{0})}}{\Delta _{N}}(\hat{\varvec{{\theta }}}(p_{0},s_{0})-\varvec{{\theta }}(p_{0})){\mathbb {I}}_{\{{\hat{p}}>p_{0}\}} \\{} & {} \quad -\frac{2}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \varepsilon _{i}{{\mathcal {Z}}_{i}({\hat{p}})}(\hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+))\right) {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}}\\{} & {} \quad +\frac{2}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \varepsilon _{i}{{\mathcal {Z}}_{i}(p_{0})}(\hat{\varvec{{\theta }}}(p_{0},s_{0}) -\varvec{{\theta }}(p_{0}))\right) {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}}. \end{aligned}$$

Since s is not consistently estimated, and from \(\left( {{\mathcal {Z}}_{i}({\hat{p}})}(\hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+)\right) ^{2}{\mathbb {I}}_{\{{\hat{p}}>p_{0}\}}\geqslant 0\), we have

$$\begin{aligned} \frac{1}{T}\left( \hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+)\right) ^{\top }\sum \limits _{i\in {\mathbb {N}}[0,T]} \frac{{{\mathcal {Z}}_{i}^{\top }({\hat{p}}){\mathcal {Z}}_{i}({\hat{p}})}}{\Delta _{N}}\left( \hat{\varvec{{\theta }}} ({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+)\right) {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}} \end{aligned}$$
$$\begin{aligned} \begin{array}{ll} \leqslant \eta \left( \left( \varvec{{\mu }}_{1}(p_{0}+)-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right) ^{\top }\displaystyle \frac{1}{\eta T}\sum _{{i}\in {\mathbb {N}}[s^{0}T-\eta T,s^{0}T]}{\frac{{Z}_{1i}^{\top }({\hat{p}}){Z}_{1i}({\hat{p}})}{\Delta _{N}}} \left( \varvec{{\mu }}_{1}(p_{0}+)-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right) \right) {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}}\\ +\eta \left( \left( \varvec{{\mu }}_{2}(p_{0}+)-\hat{\varvec{{\mu }}}_{1}({\hat{p}})\right) ^{\top }\displaystyle \frac{1}{\eta T}\sum _{{i}\in {\mathbb {N}}[s^{0}T,s^{0}T+\eta T]}{\frac{{Z}_{2i}^{\top }({\hat{p}}){Z}_{2i}({\hat{p}})}{\Delta _{N}}}\left( \varvec{{\mu }}_{2}(p_{0}+)-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right) \right) {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}}. \end{array} \end{aligned}$$
(A.6)

Let \(\gamma _{11}(T), \gamma _{12}(T)\) be the smallest eigenvalues of the matrices \(\displaystyle \sum \limits _{{i}\in {\mathbb {N}}[s^{0}T-\eta T,s^{0}T]}{{Z}_{1i}^{\top }({\hat{p}}){Z}_{1i}({\hat{p}})}/(\Delta _{N}\eta T)\) and \(\displaystyle \sum \limits _{{i}\in {\mathbb {N}}[s^{0}T,s^{0}T+\eta T]}{{Z}_{2i}^{\top }({\hat{p}}){Z}_{2i}({\hat{p}})}/(\Delta _{N}\eta T)\), respectively, while \({\hat{p}}>p_{0}\). Then,

$$\begin{aligned} (A.6)\geqslant & {} \eta \min (\gamma _{11}(T),\gamma _{12}(T))\\{} & {} \left( \left| \left| \varvec{{\mu }}_{1}(p_{0}+)-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right| \right| ^{2} +\left| \left| \varvec{{\mu }}_{2}(p_{0}+)-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right| \right| ^{2}\right) {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}}. \end{aligned}$$

Using the convexity of a quadratic function, we have \(\left| \left| \varvec{{\mu }}_{1}(p_{0}+)-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right| \right| ^{2}+\left| \left| \varvec{{\mu }}_{2}(p_{0}+) -\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right| \right| ^{2}\geqslant \left| \left| \varvec{{\mu }}_{1}(p_{0})-\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}\big /2\). Hence,

$$\begin{aligned}{} & {} \frac{\Delta _{N}}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \frac{{{\mathcal {Z}}_{i}({\hat{p}})}}{\Delta _{N}} (\hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+))\right) ^{2}\\{} & {} \qquad \geqslant \eta \frac{\min (\gamma _{11}(T),\gamma _{12}(T))}{2} \left| \left| \varvec{{\theta }}_{1}(p_{0})-\varvec{{\theta }}_{2}(p_{0})\right| \right| ^{2}{\mathbb {I}}_{\{{\hat{p}}>p_{0}\}}. \end{aligned}$$

By Proposition A.7, \(\gamma _{11}(T)\) and \(\gamma _{12}(T)\) are both bounded away from 0 and \(\eta \min \{\gamma _{11}(T),\gamma _{12}(T)\}\) is also bounded away from 0. Therefore, the right-hand side of the inequality \(\displaystyle \eta \min \{\gamma _{11}(T),\gamma _{12}(T)\}/2\) \(\left| \left| \varvec{{\mu }}_{1}(p_{0}) -\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}\) is strictly positive. Further, since \(\hat{\varvec{{\theta }}}(p_{0},s_{0})-\varvec{{\theta }}(p_{0})\xrightarrow [T\rightarrow \infty ]{a.s.}0\), we have

$$\begin{aligned} -\left( \hat{\varvec{{\theta }}}(p_{0},s_{0})-\varvec{{\theta }}(p_{0})\right) ^{\top }\sum \limits _{i\in {\mathbb {N}}[0,T]} \frac{{{\mathcal {Z}}_{i}^{\top }(p_{0}){\mathcal {Z}}_{i}(p_{0})}}{\Delta _{N}}\left( \hat{\varvec{{\theta }}}(p_{0},s_{0})-\varvec{{\theta }}(p_{0})\right) \xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}] {\mathrm{{P}}}0. \end{aligned}$$

Propositions A.2 and A.6 imply that \(\frac{2}{T}\left| \left| \sum \limits _{i\in {\mathbb {N}}[0,T]}\varepsilon _{i}{{\mathcal {Z}}_{i}({\hat{p}})}\right| \right| {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}} =o_{\mathrm{{P}}}(1)\) and

\(\frac{2}{T}\left| \left| \sum \limits _{i\in {\mathbb {N}}[0, T]}\varepsilon _{i}{{\mathcal {Z}}_{i}(p_{0})}\right| \right| {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}}=o_{\mathrm{{P}}}(1)\). So, we get

$$\begin{aligned}{} & {} -\frac{2}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \varepsilon _{i}{{\mathcal {Z}}_{i}({\hat{p}})}\left( \hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+)\right) \right) {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}}\\{} & {} \quad +\frac{2}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \varepsilon _{i}{{\mathcal {Z}}_{i}(p_{0})}\left( \hat{\varvec{{\theta }}}(p_{0},s_{0})-\varvec{{\theta }}(p_{0})\right) \right) {\mathbb {I}}_{\{{\hat{p}}>p_{0}\}}\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{\mathrm{{P}}}0. \end{aligned}$$

This is for large T,

$$\begin{aligned} (A.3)\geqslant C_{1}\left| \left| \varvec{{\mu }}_{1}(p_{0})-\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}{\mathbb {I}}_{\{{\hat{p}}>p_{0}\}} \end{aligned}$$
(A.7)

with positive probability, where \(C_{1}= \lim \nolimits _{T\rightarrow \infty }\displaystyle \min (s\gamma _{11}(T),(1-s)\gamma _{12}(T))/2>0\). Further, we have

$$\begin{aligned}{} & {} (A.4) =\left( \hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+)\right) ^{\top }\frac{1}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]}\frac{{{\mathcal {Z}}_{i}^{\top }({\hat{p}}){\mathcal {Z}}_{i}({\hat{p}})}}{\Delta _{N}}\left( \hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+)\right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}} \\{} & {} \qquad -\left( \hat{\varvec{{\theta }}}(p_{0},s_{0})-\varvec{{\theta }}(p_{0})\right) ^{\top }\frac{1}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]}\frac{{{\mathcal {Z}}_{i}^{\top }(p_{0}){\mathcal {Z}}_{i}(p_{0})}}{\Delta _{N}}\left( \hat{\varvec{{\theta }}}(p_{0},s_{0})-\varvec{{\theta }}(p_{0})\right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}} \\{} & {} \qquad -\frac{2}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \varepsilon _{i}{{\mathcal {Z}}_{i}({\hat{p}})}\left( \hat{\varvec{{\theta }}} ({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+)\right) \right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}\\{} & {} \qquad +\frac{2}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]} \left( \varepsilon _{i}{{\mathcal {Z}}_{i}(p_{0})}\left( \hat{\varvec{{\theta }}}(p_{0},s_{0})-\varvec{{\theta }}(p_{0})\right) \right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}. \end{aligned}$$

Since s is not consistently estimated, and from \(\left( {{\mathcal {Z}}_{i}({\hat{p}})}({\hat{\theta }}\left( {\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0})\right) \right) ^{2}{\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}\geqslant 0\), we have

$$\begin{aligned} \left( \hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0})\right) ^{\top }\frac{1}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]} \frac{{{\mathcal {Z}}_{i}^{\top }({\hat{p}}){\mathcal {Z}}_{i}({\hat{p}})}}{\Delta _{N}}\left( \hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}+)\right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}} \end{aligned}$$
$$\begin{aligned} \begin{array}{ll} \geqslant \eta \left( \left( \varvec{{\mu }}_{1}(p_{0})-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right) ^{\top }\displaystyle \frac{1}{\eta T}\sum _{{i}\in {\mathbb {N}}[s^{0}T-\eta T,s^{0}T]}{\frac{{Z}_{1i}^{\top }({\hat{p}}){Z}_{1i}({\hat{p}})}{\Delta _{N}}} \left( \varvec{{\mu }}_{1}(p_{0})-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right) \right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}\\ ~+\eta \left( \left( \varvec{{\mu }}_{2}(p_{0})-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right) ^{\top }\displaystyle \frac{1}{\eta T}\sum _{{i}\in {\mathbb {N}}[s^{0}T,s^{0}T+\eta T]}{\frac{{Z}_{2i}^{\top }({\hat{p}}){Z}_{2i}({\hat{p}})}{\Delta _{N}}}\left( \varvec{{\mu }}_{2}(p_{0})-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right) \right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}. \end{array} \end{aligned}$$
(A.8)

Let \(\gamma _{21}(T), \gamma _{22}(T)\) be the smallest eigenvalues of the matrices \(\sum \limits _{{i}\in {\mathbb {N}}[s^{0}T-\eta T,s^{0}T]}{{Z}_{1i}^{\top }(p_{0}){Z}_{1i}(p_{0})}/(\Delta _{N}\eta T)\) and \(\sum \limits _{{i}\in {\mathbb {N}}[s^{0}T,s^{0}T+\eta T]}{{Z}_{2i}^{\top }(p_{0}){Z}_{2i}(p_{0})}/(\Delta _{N}\eta T)\), respectively. Then,

$$\begin{aligned} (A.8)&\geqslant \eta \gamma _{21}(T)\left| \left| \varvec{{\mu }}_{1}(p_{0})-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right| \right| ^{2} +\eta \gamma _{22}(T)\left| \left| \varvec{{\mu }}_{2}(p_{0})-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right| \right| ^{2}{\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}\\&\geqslant \eta \min (\gamma _{21}(T),\gamma _{22}(T))\left( \left| \left| \varvec{{\mu }}_{1}(p_{0})-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right| \right| ^{2} +\left| \left| \varvec{{\mu }}_{2}(p_{0})-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right| \right| ^{2}\right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}. \end{aligned}$$

Using the convexity of a quadratic function, we have

$$\begin{aligned} \left| \left| \varvec{{\mu }}_{1}(p_{0})-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right| \right| ^{2}+ \left| \left| \varvec{{\mu }}_{2}(p_{0})-\hat{\varvec{{\mu }}}_{1}({\hat{p}},{\hat{s}})\right| \right| ^{2} \geqslant \left| \left| \varvec{{\mu }}_{1}(p_{0})-\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}\big /2. \end{aligned}$$

Hence,

$$\begin{aligned}{} & {} \frac{\Delta _{N}}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left( \frac{{{\mathcal {Z}}_{i}({\hat{p}})}}{\Delta _{N}}(\hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}})-\varvec{{\theta }}(p_{0}))\right) ^{2}{\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}\\{} & {} \geqslant \frac{\eta \min (\gamma _{21}(T),\gamma _{22}(T))}{2}\left| \left| \varvec{{\mu }}_{1}(p_{0})-\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}{\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}. \end{aligned}$$

By Proposition A.7, \(\gamma _{21}(T)\) and \(\gamma _{22}(T)\) are both bounded away from 0 and \(\eta \min (\gamma _{21}(T),\gamma _{22}(T))\) is also bounded away from 0. Therefore, the right-hand side of the inequality \(\displaystyle \eta \min \left( \gamma _{21}(T),\gamma _{22}(T)\right) /2\)

\(\left| \left| \varvec{{\mu }}_{1}(p_{0}) -\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}\) is positive. Similarly, we have

$$\begin{aligned}{} & {} ({\hat{\theta }}({\hat{p}},s^{0})-\varvec{{\theta }}(p_{0})^{\top }\frac{1}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]} \frac{{Z_{i}^{\top }({\hat{p}})Z_{i}({\hat{p}})}}{\Delta _{N}}({\hat{\theta }}({\hat{p}},s^{0})-\varvec{{\theta }}(p_{0}) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{\mathrm{{P}}}0, \\{} & {} \quad -\frac{2}{T}\sum \limits _{i\in {\mathbb {N}}[0,T]}\left[ \left( \varepsilon _{i}{{\mathcal {Z}}_{i}({\hat{p}})}(\hat{\varvec{{\theta }}}({\hat{p}},{\hat{s}}) -\varvec{{\theta }}(p_{0}))\right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}\right. \\{} & {} \left. +\left( \varepsilon _{i}{{\mathcal {Z}}_{i}({\hat{p}})}({\hat{\theta }}({\hat{p}},s^{0}) -\varvec{{\theta }}(p_{0}))\right) {\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}\right] \xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{\mathrm{{P}}}0, \end{aligned}$$

which implies that for large T,

$$\begin{aligned} (A.4)\geqslant C_{2}\left| \left| \varvec{{\mu }}_{1}(p_{0})-\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}{\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}. \end{aligned}$$
(A.9)

with a positive probability, where \(C_{2}= \lim \limits _{\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}}\eta \min (\gamma _{12}(T),\gamma _{22}(T))/2>0\). Similarly to the proof of (A.7) and (A.9), for large T, we have

$$\begin{aligned} (A.5)\geqslant C_{3}\left| \left| \varvec{{\mu }}_{1}(p_{0})-\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}{\mathbb {I}}_{\{{\hat{p}}<p_{0}\}} \end{aligned}$$
(A.10)

with positive probability, where \(C_{3}= \lim \nolimits _{\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}}\displaystyle \eta \min (\gamma _{31}(T),\gamma _{32}(T))/2>0\), and \(\gamma _{31}(T),\gamma _{32}(T)\) are the smallest eigenvalues of the matrices \(\displaystyle \sum \nolimits _{{i}\in {\mathbb {N}}[s^{0}T-\eta T,s^{0}T]}{Z_{1i}^{\top }({\hat{p}}){Z}_{1i}({\hat{p}})}/(\eta T\Delta _{N})\) and

\(\displaystyle \sum \nolimits _{{i}\in {\mathbb {N}}[s^{0}T,s^{0}T+\eta T]}{{Z}_{2i}^{\top }({\hat{p}}){Z}_{2i}({\hat{p}})}/(\eta T\Delta _{N})\), respectively. Finally, for large T, from (A.7), (A.9) and (A.10) we get, \(\textrm{SSE}_{1}-\textrm{SSE}_{2}\geqslant C_{1}\left| \left| \varvec{{\mu }}_{1}(p_{0})-\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}{\mathbb {I}}_{\{{\hat{p}}>p_{0}\}} +C_{2}\left| \left| \varvec{{\mu }}_{1}(p_{0})-\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}{\mathbb {I}}_{\{{\hat{p}}=p_{0}\}}\)

$$\begin{aligned} +C_{3}\left| \left| \varvec{{\mu }}_{1}(p_{0})-\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}{\mathbb {I}}_{\{{\hat{p}}<p_{0}\}} \geqslant \min \{C_{1},C_{2},C_{3}\}\left| \left| \varvec{{\mu }}_{1}(p_{0})-\varvec{{\mu }}_{2}(p_{0})\right| \right| ^{2}>0, \end{aligned}$$

with a positive probability. This completes the proof. \(\square \)

Proposition A.3

Suppose that Assumptions 14 hold. Then,

$$\begin{aligned}{} & {} \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}{{\mathcal {Z}}_{1i}^{\top }(p_{0}){\mathcal {Z}}_{1i}(p_{0})}/(t_{i+1}-t_{i})\nonumber \\{} & {} \qquad -\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}{Z_{1i}^{\top }(p_{0})Z_{1i}(p_{0})}/t_{i+1}-t_{i})\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m/2}}\varvec{{0}}, \end{aligned}$$
(A.11)
$$\begin{aligned}{} & {} \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [{\hat{s}}T,T]}{{\mathcal {Z}}_{2i}^{\top }(p_{0}){\mathcal {Z}}_{2i}(p_{0})}/(t_{i+1}-t_{i})\nonumber \\{} & {} \qquad -\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,T]}{Z_{2i}^{\top }(p_{0})Z_{2i}(p_{0})}/(t_{i+1}-t_{i})\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m/2}}\varvec{{0}}. \end{aligned}$$
(A.12)

Proof

By the definition of \(Z_{i}(p_{0})\), we have

$$\begin{aligned}{} & {} \frac{1}{T}\sum \limits _{{i}\in {\mathbb {N}}[0,{\hat{s}}T]}\frac{{{\mathcal {Z}}_{1i}^{\top }(p_{0}){\mathcal {Z}}_{1i}(p_{0})}}{t_{i+1}-t_{i}}\\{} & {} \quad =\frac{1}{T}\begin{bmatrix} \sum \limits _{{i}\in {\mathbb {N}}[0,{\hat{s}}T]}\varvec{{b}}^{\top }(i)b(i)(t_{i+1}-t_{i})&{}~-\sum \limits _{{i}\in {\mathbb {N}}[0,{\hat{s}}T]}\varvec{{b}}^{\top }(i)({\ln X(t_{i})})(t_{i+1}-t_{i})\\ -\sum \limits _{{i}\in {\mathbb {N}}[0,{\hat{s}}T]}({\ln X(t_{i})})b(i)(t_{i+1}-t_{i})&{}\sum \limits _{{i}\in {\mathbb {N}}[0,{\hat{s}}T]}({\ln X(t_{i})})^{2}(t_{i+1}-t_{i}) \end{bmatrix}, \end{aligned}$$

Note that \({\ln X(t_{i})} ={\left\{ \begin{array}{ll} \ln X_{1}(t_{i}), &{}~~\textrm{if}~~ i\in {\mathbb {N}}[0,{\hat{s}}T]~~~\textrm{and}~~~{\hat{s}}<s\\ \ln X_{1}(t_{i}){\mathbb {I}}_{\{i\in {\mathbb {N}}[0,{s}T]\}}+\ln X_{2}(t_{i}){\mathbb {I}}_{\{i\in {\mathbb {N}}[{s}T,{\hat{s}}T]\}},&{} ~~\textrm{if}~~ i\in {\mathbb {N}}[0,{\hat{s}}T]~~~\textrm{and}~~~{\hat{s}}>s \end{array}\right. }\). First, since \({\hat{s}}\) is a consistent estimator of s, \(\forall ~\varepsilon >0\), \(\forall ~0<\delta <s/2\), we have

$$\begin{aligned} \textrm{P}\left( |{\hat{s}}-s|>\delta \right) <\varepsilon . \end{aligned}$$
(A.13)

for sufficiently large T. Then, \({\mathbb {E}}\left[ \left| \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}\varvec{{b}}^{\top }(i){\varvec{{b}}(i)}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}\varvec{{b}}^{\top }(i){\varvec{{b}}(i)}(t_{i+1}-t_{i})\right| \right| ^{m/2}\right] \)

$$\begin{aligned}{} & {} ={\mathbb {E}}\left[ \left| \left| \displaystyle \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,{\hat{s}}T]}\varvec{{b}}^{\top }(i){\varvec{{b}}(i)}(t_{i+1}-t_{i})\right| \right| ^{m/2}{\mathbb {I}}_{\{{\hat{s}}-s>0\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\leqslant \delta \}}\right] \end{aligned}$$
(A.14)
$$\begin{aligned}{} & {} +{\mathbb {E}}\left[ \left| \left| \displaystyle \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [{\hat{s}}T, sT]}\varvec{{b}}^{\top }(i){\varvec{{b}}(i)}(t_{i+1}-t_{i})\right| \right| ^{m/2}{\mathbb {I}}_{\{{\hat{s}}-s\leqslant 0\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\leqslant \delta \}}\right] \end{aligned}$$
(A.15)
$$\begin{aligned}{} & {} +{\mathbb {E}}\left[ \left| \left| \displaystyle \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,{\hat{s}}T]}\varvec{{b}}^{\top }(i){\varvec{{b}}(i)}(t_{i+1}-t_{i})\right| \right| ^{m/2}{\mathbb {I}}_{\{{\hat{s}}-s>0\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\geqslant \delta \}}\right] \end{aligned}$$
(A.16)
$$\begin{aligned}{} & {} +{\mathbb {E}}\left[ \left| \left| \displaystyle \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [{\hat{s}}T, sT]}\varvec{{b}}^{\top }(i){\varvec{{b}}(i)}(t_{i+1}-t_{i})\right| \right| ^{m/2}{\mathbb {I}}_{\{{\hat{s}}-s\leqslant 0\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\geqslant \delta \}}\right] . \end{aligned}$$
(A.17)
$$\begin{aligned} (A.14)\leqslant {\mathbb {E}}\left[ \left( \displaystyle \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,{\hat{s}}T]}\left| \left| \varvec{{b}}^{\top }(i){\varvec{{b}}(i)}\right| \right| (t_{i+1}-t_{i})\right) ^{m/2}{\mathbb {I}}_{\{{\hat{s}}-s>0\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\leqslant \delta \}}\right] \\ \leqslant (pK_{b})^{m/2}{\mathbb {E}}\left[ \left( {\hat{s}}-s\right) ^{m/2}{\mathbb {I}}_{\{{\hat{s}}-s>0\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\leqslant \delta \}}\right] \leqslant (pK_{b})^{m/2}\left( \delta \right) ^{m/2}. \end{aligned}$$

Similarly, we get (A.15)\(\leqslant (pK_{b})^{m/2}\left( \delta \right) ^{m/2}.\) Further, by Cauchy–Schwartz inequality,

$$\begin{aligned} (A.16)\leqslant \left\{ {\mathbb {E}}\left[ \left| \left| \displaystyle \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,{\hat{s}}T]}\varvec{{b}}^{\top }(i){\varvec{{b}}(i)}(t_{i+1}-t_{i})\right| \right| ^{m}\right] {\mathbb {E}}\left[ {\mathbb {I}}_{\{{\hat{s}}-s>0\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\geqslant \delta \}} \right] \right\} ^{1/2} \\ \leqslant (pK_{b})^{m/2}\left\{ {\mathbb {E}}\left[ \left( {\hat{s}}-s\right) ^{m}\right] \textrm{P}\left( |{\hat{s}}-s|\geqslant \delta \right) \right\} ^{1/2} <(pK_{b})^{m/2}2^{m/2}\sqrt{\varepsilon }, \end{aligned}$$

where we used the fact that \(|{\hat{s}}-s|\leqslant 2\) a.s. Following the same techniques, we get (A.17)\(<(pK_{b})^{m/2}2^{m/2}\sqrt{\varepsilon }\). This implies that

$$\begin{aligned} \begin{array}{ll} {\mathbb {E}}\left[ \left| \left| \displaystyle \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}\varvec{{b}}^{\top }(i){\varvec{{b}}(i)}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}\varvec{{b}}^{\top }(i){\varvec{{b}}(i)}(t_{i+1}-t_{i})\right| \right| ^{m/2}\right] \\ <2(pK_{b})^{m/2}\left( \delta \right) ^{m/2}+2(pK_{b})^{m/2}2^{m/2}\sqrt{\varepsilon }=2(pK_{b})^{m/2}\left( \left( \delta \right) ^{m/2}+\sqrt{\varepsilon }\right) . \end{array} \end{aligned}$$
(A.18)

Second, from (A.13),

$$\begin{aligned} {\mathbb {E}}\left[ \left| \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}({\ln X(t_{i})}){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}(\ln X_{1}(t_{i})){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})\right| \right| ^{m/2}\right] \nonumber \\ \end{aligned}$$
$$\begin{aligned}{} & {} ={\mathbb {E}}\left[ \left| \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}({\ln X(t_{i})}){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}(\ln X_{1}(t_{i})){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})\right| \right| ^{m/2}{\mathbb {I}}_{\{|{\hat{s}}-s|>\delta \}}\right] \nonumber \\ \end{aligned}$$
(A.19)
$$\begin{aligned}{} & {} +{\mathbb {E}}\left[ \left| \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}({\ln X(t_{i})}){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}(\ln X_{1}(t_{i})){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})\right| \right| ^{m/2}{\mathbb {I}}_{\{|{\hat{s}}-s|\leqslant \delta \}}\right] . \nonumber \\ \end{aligned}$$
(A.20)

Next, we have

$$\begin{aligned} (A.19) \leqslant {\mathbb {E}}\left[ \left( \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,T]}\left| \left| (\ln X_{2}(t_{i}){\varvec{{b}}(t_{i})}\right| \right| (t_{i+1}-t_{i})\right) ^{m/2}{\mathbb {I}}_{\{{\hat{s}}>s+\delta \}}\right] \\ +{\mathbb {E}}\left[ \left( \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}\left| \left| (\ln X_{1}(t_{i}){\varvec{{b}}(t_{i})}\right| \right| (t_{i+1}-t_{i})\right) ^{m/2}{\mathbb {I}}_{\{{\hat{s}}<s-\delta \}}\right] . \end{aligned}$$

Further, by Cauchy–Schwartz inequality,

$$\begin{aligned}{} & {} {\mathbb {E}}\left[ \left( \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,T]}\left| \left| (\ln X_{2}(t_{i}){\varvec{{b}}(t_{i})}\right| \right| (t_{i+1}-t_{i})\right) ^{m/2}{\mathbb {I}}_{\{{\hat{s}}>s+\delta \}}\right] \\{} & {} \quad \leqslant \frac{1}{T^{m/2}}\left\{ {\mathbb {E}}\left[ \left( \sum \limits _{i\in {\mathbb {N}} [sT,T]}\left| \left| (\ln X_{2}(t_{i}){\varvec{{b}}(t_{i})}\right| \right| (t_{i+1}-t_{i})\right) ^{m}\right] \textrm{P}\left( {\hat{s}}>s+\delta \right) \right\} ^{1/2} \\{} & {} \quad \leqslant \frac{1}{T^{m/2}}(p_{0}K_{b})^{m/2}\left\{ ((1-s)T)^{m-1}\left( \sum \limits _{i\in {\mathbb {N}} [sT,T]}{\mathbb {E}}\left[ \left| \ln X_{2}(t_{i})\right| ^{m}\right] (t_{i+1}-t_{i})\right) \textrm{P}\left( {\hat{s}}>s+\delta \right) \right\} ^{1/2} \\{} & {} \quad \leqslant \left( \frac{p_{0}K_{b}}{T}\right) ^{m/2}((1-s)T)^{m/2}\sqrt{\sup \limits _{t\geqslant 0}{\mathbb {E}}\left[ \left| \ln X(t)\right| ^{m}\right] }\left\{ \textrm{P}\left( {\hat{s}}>s+\delta \right) \right\} ^{1/2} \\ {}{} & {} \quad = (p_{0}K_{b}(1-s))^{m/2}\sqrt{\sup \limits _{t\geqslant 0}{\mathbb {E}}\left[ \left| \ln X(t)\right| ^{m}\right] }\sqrt{\varepsilon }. \end{aligned}$$

Similarly, we get

$$\begin{aligned}{} & {} {\mathbb {E}}\left[ \left( \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}\left| \left| (\ln X_{1}(t_{i})){\varvec{{b}}(t_{i})}\right| \right| (t_{i+1}-t_{i})\right) ^{m/2}{\mathbb {I}}_{\{{\hat{s}}<s-\delta \}}\right] \\{} & {} <(p_{0}K_{b}s)^{m/2}\sqrt{\sup \limits _{t\geqslant 0}{\mathbb {E}}\left[ \left| \ln X(t)\right| ^{m}\right] }\sqrt{\varepsilon }. \end{aligned}$$

This implies that (A.19)\(<2(p_{0}K_{b}(1-s))^{m/2}\sqrt{\sup \limits _{t\geqslant 0}{\mathbb {E}}\left[ \left| \ln X(t)\right| ^{m}\right] }\sqrt{\varepsilon }.\) For (A.20), we have

$$\begin{aligned} {\mathbb {E}}\left[ \left| \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}({\ln X(t_{i})}){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}(\ln X(t_{i})){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})\right| \right| ^{m/2}{\mathbb {I}}_{\{|{\hat{s}}-s|\leqslant \delta \}}\right] \\ \leqslant {\mathbb {E}}\left[ \left( \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [(s-\delta )T,sT]}\left| \left| (\ln X_{1}(t_{i}){\varvec{{b}}(t_{i})}\right| \right| (t_{i+1}-t_{i})\right) ^{m/2}{\mathbb {I}}_{\{s-\delta<{\hat{s}}<s\}}\right] \\ +{\mathbb {E}}\left[ \left( \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,(s+\delta )T]}\left| \left| (\ln X_{2}(i){\varvec{{b}}(t_{i})}\right| \right| (t_{i+1}-t_{i})\right) ^{m/2}{\mathbb {I}}_{\{s<{\hat{s}}<s+\delta \}}\right] \\ \leqslant 2{\mathbb {E}}\left[ \left( \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [(s-\delta )T,(s+\delta )T]}\left| \left| ({\ln X(t_{i})}){\varvec{{b}}(t_{i})}\right| \right| (t_{i+1}-t_{i})\right) ^{m/2}{\mathbb {I}}_{\{s-\delta<{\hat{s}}<s+\delta \}}\right] . \end{aligned}$$

By Cauchy–Schwartz inequality and the fact that \(\textrm{P}(s-\delta<{\hat{s}}<s+\delta )\leqslant 1\),

$$\begin{aligned} {\mathbb {E}}\left[ \left| \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}({\ln X(t_{i})}){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}(\ln X(t_{i})){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})\right| \right| ^{m/2}{\mathbb {I}}_{\{|{\hat{s}}-s|\leqslant \delta \}}\right] \\ \leqslant 2\left\{ {\mathbb {E}}\left[ \left( \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [(s-\delta )T,(s+\delta )T]}\left| \left| ({\ln X(t_{i})}){\varvec{{b}}(t_{i})}\right| \right| (t_{i+1}-t_{i})\right) ^{m}\right] \right\} ^{1/2}. \end{aligned}$$

Furthermore, by Jensen’s inequality and Proposition 2.2, we get

$$\begin{aligned}{} & {} {\mathbb {E}}\left[ \left( \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [(s-\delta )T,(s+\delta )T]}(|{\ln X(t_{i})}|)\left| \left| {\varvec{{b}}(t_{i})}\right| \right| (t_{i+1}-t_{i})\right) ^{m}\right] \\{} & {} \quad \leqslant (2\delta )^{m}K_{b}^{m}\sup \limits _{t\geqslant 0}{\mathbb {E}}[|\ln X(t)|^{m}]\frac{1}{2\delta T}\sum \limits _{i\in {\mathbb {N}} [(s-\delta )T,(s+\delta )T]}(t_{i+1}-t_{i}) \\{} & {} \quad = (2\delta )^{m}K_{b}^{m}\sup \limits _{t\geqslant 0}{\mathbb {E}}[|\ln X(t)|^{m}]. \end{aligned}$$

Since \(\delta \) and \(\varepsilon \) can be arbitrary small, we have

$$\begin{aligned}{} & {} \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}({\ln X(t_{i})}){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})\nonumber \\{} & {} \quad -\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}({\ln X_{1}(t_{i})}){\varvec{{b}}(t_{i})}(t_{i+1}-t_{i})\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m/2}}\varvec{{0}}_{1\times P_{0}}. \end{aligned}$$
(A.21)

Finally, for the last term, we have

$$\begin{aligned}{} & {} {\mathbb {E}}\left[ \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}({\ln X(t_{i}}))^{2}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}(\ln X_{1}(t_{i}))^{2}(t_{i+1}-t_{i})\right| ^{m/2}\right] \nonumber \\{} & {} \quad ={\mathbb {E}}\left[ \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}({\ln X(t_{i})})^{2}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}(\ln X_{1}(t_{i}))^{2}(t_{i+1}-t_{i})\right| ^{m/2}{\mathbb {I}}_{\{|{\hat{s}}-s|\geqslant \delta \}}\right] \nonumber \\ \end{aligned}$$
(A.22)
$$\begin{aligned}{} & {} \qquad +{\mathbb {E}}\left[ \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}({\ln X(t_{i})}))^{2}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}(\ln X_{1}(t_{i})^{2}(t_{i+1}-t_{i})\right| ^{m/2}{\mathbb {I}}_{\{|{\hat{s}}-s|<\delta \}}\right] . \nonumber \\ \nonumber \\ \end{aligned}$$
(A.23)

Further,

$$\begin{aligned} (A.22) \leqslant&{\mathbb {E}}\left[ \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,T]}({\ln X_{2}(t_{i})})^{2}(t_{i+1}-t_{i})\right| ^{m/2}{\mathbb {I}}_{\{{\hat{s}}>s+ \delta \}}\right] \\&+{\mathbb {E}}\left[ \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}(\ln X_{1}(t_{i}))^{2}(t_{i+1}-t_{i})\right| ^{m/2}{\mathbb {I}}_{\{{\hat{s}}<s- \delta \}}\right] . \end{aligned}$$

Then, from Jensen’s inequality,

$$\begin{aligned} (A.22)\leqslant&\frac{1}{T}{\mathbb {E}}\left[ \sum \limits _{i\in {\mathbb {N}} [sT,T]}|{\ln X_{2}(t_{i})}|^{m}(t_{i+1}-t_{i}){\mathbb {I}}_{\{{\hat{s}}>s+ \delta \}}\right] \\&+\frac{1}{T}{\mathbb {E}}\left[ \sum \limits _{i\in {\mathbb {N}} [0,sT]}|{\ln X_{2}(t_{i})}|^{m}(t_{i+1}-t_{i}){\mathbb {I}}_{\{{\hat{s}}<s- \delta \}}\right] . \end{aligned}$$

Then, from (2.5), we get

$$\begin{aligned} \begin{array}{ll} (A.22)&{}\leqslant 3^{m-1}{\mathbb {E}}\left[ \sum \limits _{i\in {\mathbb {N}} [sT,T]}\left( |e^{-\alpha _{2} (t_{i}-\phi )}\ln {X_{0}^{\phi }}|^{m}+|r_{2}^{\phi }(t_{i}-\phi )|^{m}+|\tau _{2}^{\phi }(t_{i}-\phi )|^{m}\right) (t_{i+1}-t_{i}){\mathbb {I}}_{\{{\hat{s}}>s+ \delta \}}\right] \\ &{}~+ 3^{m-1}{\mathbb {E}}\left[ \sum \limits _{i\in {\mathbb {N}} [0,sT]}\left( |e^{-\alpha _{2} (t_{i}-\phi )}\ln {X_{0}^{\phi }}|^{m}+|r_{2}^{\phi }(t_{i}-\phi )|^{m}+|\tau _{2}^{\phi }(t_{i}-\phi )|^{m}\right) (t_{i+1}-t_{i}){\mathbb {I}}_{\{{\hat{s}}<s- \delta \}}\right] . \end{array}\nonumber \\ \end{aligned}$$
(A.24)

First, by Assumption 2, we get

$$\begin{aligned}{} & {} {\mathbb {E}}\left[ \sum \limits _{i\in {\mathbb {N}} [sT,T]}\left( |e^{-\alpha _{2} (t_{i}-\phi )}\ln {X_{0}^{\phi }}|^{m}+|r_{2}^{\phi }(t_{i}-\phi )|^{m}+|\tau _{2}^{\phi }(t_{i}-\phi )|^{m}\right) (t_{i+1}-t_{i}){\mathbb {I}}_{\{{\hat{s}}>s+ \delta \}}\right] \\{} & {} \quad ={\mathbb {E}}\left[ |\ln {X_{0}^{\phi }}|^{m}\right] \left( \sum \limits _{i\in {\mathbb {N}} [sT,T]}\left( |e^{-m\alpha _{2} (t_{i}-\phi )}|\right) (t_{i+1}-t_{i})\right) \textrm{P}{\{{\hat{s}}>s+ \delta \}} \\{} & {} \quad +\left( \sum \limits _{i\in {\mathbb {N}} [sT,T]}\left( |r_{2}^{\phi }(t_{i}-\phi )|^{m}\right) (t_{i+1}-t_{i})\right) \textrm{P}{\{{\hat{s}}>s+ \delta \}}\\{} & {} \quad +{\mathbb {E}}\left[ \sum \limits _{i\in {\mathbb {N}} [sT,T]}\left( |\tau _{2}^{\phi }(t_{i}-\phi )|^{m}\right) (t_{i+1}-t_{i}){\mathbb {I}}_{\{{\hat{s}}>s+\delta \}}\right] . \end{aligned}$$

Since \({\mathbb {E}}\left[ |\ln {X_{0}^{\phi }}|^{m}\right] <\infty \), we get

$$\begin{aligned}{} & {} {\mathbb {E}}\left[ |\ln {X_{0}^{\phi }}|^{m}\right] \left( \sum \limits _{i\in {\mathbb {N}} [sT,T]}\left( |e^{-m\alpha _{2} (t_{i}-\phi )}|\right) (t_{i+1}-t_{i})\right) \textrm{P}{\{{\hat{s}}>s+ \delta \}}\nonumber \\{} & {} \quad < {\mathbb {E}}\left[ |\ln {X_{0}^{\phi }}|^{m}\right] (1-s)T\textrm{P}{\{{\hat{s}}>s+ \delta \}}. \end{aligned}$$
(A.25)

We also get

$$\begin{aligned} \left( \sum \limits _{i\in {\mathbb {N}} [sT,T]}\left( |r_{2}^{\phi }(t_{i}-\phi )|^{m}\right) (t_{i+1}-t_{i})\right) \textrm{P}{\{{\hat{s}}>s+ \delta \}} \leqslant \left( \displaystyle \frac{K_{\theta } K_{b}+\frac{1}{2}\sigma ^{2}}{\alpha _{2}}\right) ^{m}\! (1-s)T\textrm{P}{\{{\hat{s}}>s+ \delta \}}.\qquad \end{aligned}$$
(A.26)

From Cauchy–Schwartz inequality and Jensen’s inequality, we get

$$\begin{aligned} \begin{array}{ll} {\mathbb {E}}\left[ \sum \limits _{i\in {\mathbb {N}} [sT,T]}\left( |\tau _{2}^{\phi }(t_{i}-\phi )|^{m}\right) (t_{i+1}-t_{i}){\mathbb {I}}_{\{{\hat{s}}>s+ \delta \}}\right] \\ \quad \leqslant \left\{ {\mathbb {E}}\left[ \left( \sum \limits _{i\in {\mathbb {N}} [sT,T]}|\tau _{2}^{\phi }(t_{i}-\phi )|^{m}(t_{i+1}-t_{i})\right) ^{2}\right] \textrm{P}{\{{\hat{s}}>s+ \delta \}}\right\} ^{1/2}\\ \quad \leqslant (1-s)T\sigma ^{m}\left( \displaystyle \frac{1}{2\alpha _{2}}\right) ^{m/2}\sqrt{C_{m}\textrm{P}{\{{\hat{s}}>s+ \delta \}}}. \end{array} \end{aligned}$$
(A.27)

(A.25), (A.26), (A.27), and (A.13) imply that

$$\begin{aligned} \begin{array}{ll} {\mathbb {E}}\left[ \sum \limits _{i\in {\mathbb {N}} [sT,T]}\left( |e^{-\alpha _{2} (t_{i}-\phi )}\ln {X_{0}^{\phi }}|^{m}+|r_{2}^{\phi }(t_{i}-\phi )|^{m}+|\tau _{2}^{\phi }(t_{i}-\phi )|^{m}\right) (t_{i+1}-t_{i}){\mathbb {I}}_{\{{\hat{s}}>s+ \delta \}}\right] \\ \leqslant \left( {\mathbb {E}}\left[ |\ln {X_{0}^{\phi }}|^{m}\right] +\left( \displaystyle \frac{K_{\theta } K_{b}+\frac{1}{2}\sigma ^{2}}{\alpha _{2}}\right) ^{m}\right) \varepsilon +\sigma ^{m}\left( \displaystyle \frac{1}{2\alpha _{2}}\right) ^{m/2}\sqrt{C_{m}\varepsilon }. \end{array}\nonumber \\ \end{aligned}$$
(A.28)

Similar to the proof of (A.25), (A.26), and (A.27), we get

$$\begin{aligned} \begin{array}{ll} {\mathbb {E}}\left[ \sum \limits _{i\in {\mathbb {N}} [0,sT]}\left( |e^{-\alpha _{2} (t_{i}-\phi )}\ln {X_{0}^{\phi }}|^{m}+|r_{2}^{\phi }(t_{i}-\phi )|^{m}+|\tau _{2}^{\phi }(t_{i}-\phi )|^{m}\right) (t_{i+1}-t_{i}){\mathbb {I}}_{\{{\hat{s}}<s- \delta \}}\right] \\ \quad \leqslant \left( {\mathbb {E}}\left[ |\ln {X_{0}^{\phi }}|^{m}\right] +\left( \displaystyle \frac{K_{\theta } K_{b}+\frac{1}{2}\sigma ^{2}}{\alpha _{2}}\right) ^{m}\right) \varepsilon +\sigma ^{m}\left( \displaystyle \frac{1}{2\alpha _{2}}\right) ^{m/2}\sqrt{C_{m}\varepsilon }. \end{array}\nonumber \\ \end{aligned}$$
(A.29)

(A.24), (A.28) and (A.29) imply that

$$\begin{aligned} (A.22)\leqslant 2\left( \left( {\mathbb {E}}\left[ |\ln {X_{0}^{\phi }}|^{m}\right] +\left( \displaystyle \frac{K_{\theta } K_{b}+\frac{1}{2}\sigma ^{2}}{\alpha _{2}}\right) ^{m}\right) \varepsilon +\sigma ^{m}\left( \displaystyle \frac{1}{2\alpha _{2}}\right) ^{m/2}\sqrt{C_{m}\varepsilon }\right) .\nonumber \\ \end{aligned}$$
(A.30)

Following the same technique, we have

$$\begin{aligned} (A.23)&\leqslant {\mathbb {E}}\left[ \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [(s-\delta )T,sT]}(\ln X_{1}(t_{i}))^{2}(t_{i+1}-t_{i})\right| ^{m/2}{\mathbb {I}}_{\{s-\delta<{\hat{s}}<s\}}\right] \\&\quad +{\mathbb {E}}\left[ \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,(s+\delta )T]}(\ln X_{2}(t_{i}))^{2}(t_{i+1}-t_{i})\right| ^{m/2}{\mathbb {I}}_{\{s<{\hat{s}}<s+\delta \}}\right] \\&\qquad \leqslant {\mathbb {E}}\left[ \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [(s-\delta )T,sT]}(\ln X_{1}(t_{i}))^{2}(t_{i+1}-t_{i})\right| ^{m/2}\right] \\&\quad +{\mathbb {E}}\left[ \left| \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [sT,(s+\delta )T]}(\ln X_{2}(t_{i}))^{2}(t_{i+1}-t_{i})\right| ^{m/2}\right] . \end{aligned}$$

From Jensen’s inequality, this gives

$$\begin{aligned} (A.23){} & {} \leqslant (\delta )^{m/2}\frac{1}{\delta T}\sum \limits _{i\in {\mathbb {N}} [(s-\delta )T,sT]}{\mathbb {E}}\left[ |\ln X_{1}(t_{i})|^{m}\right] (t_{i+1}-t_{i})+(\delta )^{m/2}\frac{1}{\delta T}\\{} & {} \sum \limits _{i\in {\mathbb {N}} [sT,(s+\delta )T]}{\mathbb {E}}\left[ |\ln X_{2}(t_{i})|^{m}\right] (t_{i+1}-t_{i}). \end{aligned}$$

Proposition 2.2 gives that

$$\begin{aligned} (A.23)\leqslant \sup \limits _{t\geqslant 0}{\mathbb {E}}[|\ln X(t)|^{m}]\left( \delta \right) ^{m}. \end{aligned}$$
(A.31)

Since \(\delta \) and \(\varepsilon \) can be arbitrary small, together with (A.30) and (A.31), we get

$$\begin{aligned} \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}(\ln X_{i})^{2}(t_{i+1}-t_{i})-\frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}(\ln X_{i})^{2}(t_{i+1}-t_{i})\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m/2}}0. \end{aligned}$$
(A.32)

(A.18), (A.21) and (A.32) imply that

$$\begin{aligned} \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}{{\mathcal {Z}}_{1i}^{\top }(p_{0}){\mathcal {Z}}_{1i}(p_{0})}/(t_{i+1}-t_{i})- \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,sT]}{Z_{1i}^{\top }(p_{0})Z_{1i}(p_{0})}/(t_{i+1}-t_{i})\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m/2}} \varvec{{0}}. \end{aligned}$$

By using similar techniques, one proves the second statement. This completes the proof. \(\square \)

Proposition A.4

Suppose that Assumptions 14 hold. Then, we have

$$\begin{aligned}{} & {} \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}\frac{{{\mathcal {Z}}_{1i}^{\top }(p_{0}){\mathcal {Z}}_{1i}(p_{0})}}{t_{i+1}-t_{i}}\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m/2}}s\varvec{{\Sigma }}_{1}, \quad { } \text{ and } \quad { } \nonumber \\{} & {} \quad \frac{1}{T}\sum \limits _{i\in {\mathbb {N}} [{\hat{s}}T,T]}\frac{{{\mathcal {Z}}_{2i}^{\top }(p_{0}){\mathcal {Z}}_{2i}(p_{0})}}{t_{i+1}-t_{i}}\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m/2}}(1-s)\varvec{{\Sigma }}_{2}. \end{aligned}$$
(A.33)

Proof

To prove the first statement, it suffices to combines Propositions A.3, 2.8 along with some algebraic computations. The proof of the second statement in (A.33) is similar. This completes the proof. \(\square \)

Proposition A.5

If Assumptions 14 hold, then,

$$\begin{aligned}{} & {} \frac{1}{\sqrt{T}}\sum \limits _{i\in {\mathbb {N}}[0,{\hat{s}}T]}\epsilon _{i}{{\mathcal {Z}}_{1i}(p_{0})}/(t_{i+1}-t_{i})\nonumber \\{} & {} \quad - \frac{1}{\sqrt{T}}\sum \limits _{i\in {\mathbb {N}}[0,sT]}\epsilon _{i}{Z_{1i}(p_{0})}/(t_{i+1}-t_{i})\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m/2}}{\textbf{0}}_{1\times (p_{0}+1)}; \end{aligned}$$
(A.34)
$$\begin{aligned}{} & {} \frac{1}{\sqrt{T}}\sum \limits _{i\in {\mathbb {N}}[{\hat{s}}T,T]}\epsilon _{i}{{\mathcal {Z}}_{2i}(p_{0})}/(t_{i+1}-t_{i})\nonumber \\{} & {} \quad -\frac{1}{\sqrt{T}}\sum \limits _{i\in {\mathbb {N}}[sT,T]}\epsilon _{i}{Z_{2i}(p_{0})}/(t_{i+1}-t_{i})\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m/2}}{\textbf{0}}_{1\times (p_{0}+1)}. \end{aligned}$$
(A.35)

Proof

To prove (A.34), we use the inequality

$$\begin{aligned} \begin{array}{ll} \left| \left| \displaystyle \frac{1}{\sqrt{T}}\sum \limits _{i\in {\mathbb {N}}[0,{\hat{s}}T]}\epsilon _{i}{{\mathcal {Z}}_{1i}(p_{0})}/(t_{i+1}-t_{i}) -\frac{1}{\sqrt{T}}\sum \limits _{i\in {\mathbb {N}}[0,sT]}\epsilon _{i}{Z_{1i}}(p_{0})/(t_{i+1}-t_{i})\right| \right| ^{m/2} \\ \quad \leqslant 3^{m/2-1}\left( \left| \left| \displaystyle \frac{1}{\sqrt{T}}\sum \limits _{i\in {\mathbb {N}}[0,{\hat{s}}T]}\epsilon _{i}{{\mathcal {Z}}_{1i}(p_{0})}/(t_{i+1}-t_{i}) -\frac{\sigma }{\sqrt{T}}\int _{0}^{{\hat{s}}T}\left( \varvec{{b}}(t),-\ln X(t)\right) dB_{t}\right| \right| ^{m/2}\right. \\ \qquad +\left| \left| \displaystyle \frac{\sigma }{\sqrt{T}}\int _{0}^{{\hat{s}}T}\left( \varvec{{b}}(t),-\ln X(t)\right) dB_{t}-\frac{\sigma }{\sqrt{T}}\int _{0}^{{s}T}\left( \varvec{{b}}(t),-\ln X(t)\right) dB_{t}\right| \right| ^{m/2} \\ \qquad \left. +\left| \left| \displaystyle \frac{\sigma }{\sqrt{T}}\int _{0}^{{s}T}\left( \varvec{{b}}(t),-\ln X(t)\right) dB_{t}-\frac{1}{\sqrt{T}}\sum \limits _{i\in {\mathbb {N}}[0,sT]}\epsilon _{i}{{Z}_{1i}}(p_{0})/(t_{i+1}-t_{i})\right| \right| ^{m/2} \right) . \end{array} \end{aligned}$$

One can prove that, \(\displaystyle \sum \limits _{i\in {\mathbb {N}}[0,{\hat{s}}T]}\epsilon _{i}{{\mathcal {Z}}_{1i}}(p_{0})/((t_{i+1}-t_{i})\sqrt{T}) -\sigma \int _{0}^{{\hat{s}}T}\left( \varvec{{b}}(t),-\ln X(t)\right) dB_{t}/\sqrt{T}\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m}}\varvec{{0}}_{1\times (p+1)}\), \(\displaystyle \sum \limits _{i\in {\mathbb {N}}[0,sT]}\epsilon _{i}{{Z}_{1i}}(p_{0})/((t_{i+1}-t_{i})\sqrt{T})-\sigma \int _{0}^{sT}\left( \varvec{{b}}(t),-\ln X(t)\right) dB_{t}/\sqrt{T}\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{L^{m}}{\varvec{{0}}}\), and by Lemmas A.3A.4, \(\displaystyle \sigma \int _{0}^{{\hat{s}}T}\left( \varvec{{b}}(t),\right. \left. -\ln X(t)\right) dB_{t}/\sqrt{T}-\sigma \int _{0}^{{s}T}\left( \varvec{{b}}(t),\right. \left. -\ln X(t)\right) dB_{t}/\sqrt{T}\xrightarrow [T\rightarrow \infty ]{L^{m/2}}{\varvec{{0}}}\). This completes the proof of (A.34), and (A.35) is proved by similar techniques. \(\square \)

Proposition A.6

If Assumptions 14 hold, then, for some \(0<a^{*}<{\varvec{a}}/2\),

$$\begin{aligned} \left( \left| \left| \sum \limits _{i\in {\mathbb {N}}[0,{\hat{s}}T]}\varepsilon _{i}{{\mathcal {Z}}_{1i}(p)}/(t_{i+1}-t_{i})\right| \right| , \left| \left| \sum \limits _{i\in {\mathbb {N}}[{\hat{s}}T,T]}\varepsilon _{i}{{\mathcal {Z}}_{2i}(p)}/(t_{i+1}-t_{i})\right| \right| \right) =O_{\mathrm{{P}}}(\sqrt{T}\textrm{log}^{\textit{a}^{*}}(\textit{T})).\nonumber \\ \end{aligned}$$
(A.36)

Proof

The proof follows from the triangle inequality and Proposition A.2. \(\square \)

Propositions A.3A.6 imply that \({\hat{\theta }}_{T}({\hat{s}})\) obtained from discretized version is consistent.

Proof of Proposition 3.2

The proof of the second claim follows directly from the first statement. Thus, only prove the first statement. From the log-likelihood function defined in (2.6) and SIC information criterion in (3.4), along with the fact that, by (3.2), \(Y_{i}={Z_{ki}(p_{0})\varvec{{\mu }}_{k}(p_{0})+\epsilon _{i},k=1,2}\),

$$\begin{aligned} \textrm{IC}(1,p)&=-2\left( \frac{1}{2\sigma ^{2}}\left( \sum _{i\in {\mathbb {N}}[0,T]}Y^{2}_{i}/(t_{i+1}-t_{i})-\sum _{i\in {\mathbb {N}} [0,{{\hat{s}}T}]}\left( {{\mathcal {Z}}_{1i}(p_{0})}\varvec{{\mu }}_{1}(p_{0})\right. \right. \right. \\&\left. \left. \left. +\varepsilon _{i}-{{\mathcal {Z}}_{1i}(p)}\hat{\varvec{{\mu }}}_{1}(p)\right) ^{2}/(t_{i+1}-t_{i})\right. \right. \\&\quad \left. \left. -\sum _{i\in {\mathbb {N}} [{{\hat{s}}T},T]}\left( {{\mathcal {Z}}_{2i}(p_{0})}\varvec{{\mu }}_{2}(p_{0})+\varepsilon _{i}-{{\mathcal {Z}}_{2i}(p)}\hat{\varvec{{\mu }}}_{2}(p)\right) ^{2}/(t_{i+1}-t_{i})\right) \right) \\&+2(p+1)\textrm{log}(N), \end{aligned}$$

and

$$\begin{aligned}{} & {} \textrm{IC}(0,p) =\\{} & {} -2\left( \frac{1}{2\sigma ^{2}}\left( \sum _{i\in {\mathbb {N}}[0,T]}\frac{Y^{2}_{i}}{t_{i+1}-t_{i}}-\sum _{i\in {\mathbb {N}} [0,T]}\frac{\left( {Z_{1i}(p_{0})}\varvec{{\mu }}_{1}(p_{0})+\varepsilon _{i}-{Z_{1i}(p)}\hat{\varvec{{\mu }}}_{1}(p)\right) ^{2}}{t_{i+1}-t_{i}}\right) \right) \\{} & {} +(p+1)\textrm{log}(N). \end{aligned}$$

First, suppose that \(c^{0}=0\), we need to compare \(\textrm{IC}(0,p_{0})\), \(\textrm{IC}(c,p)\), for \(c=1,~\textrm{or}~p\ne p_{0}\).

  1. (1)

    \(c=1, p=p_{0}\): In this case, we have \(\varvec{{\mu }}_{1}(p_{0})=\varvec{{\mu }}_{2}(p_{0})=\varvec{{\mu }}(p_{0})\) and one verifies that

    $$\begin{aligned}{} & {} \textrm{IC}(0,p_{0})-\textrm{IC}(1,p_{0}) =\frac{1}{\sigma ^{2}}\sum _{i\in {\mathbb {N}} [0,T]}\frac{\left( Z_{i}(p_{0})\varvec{{\theta }}(p_{0})-Z_{i}(p_{0}){\hat{\theta }}(p_{0})\right) ^{2}}{t_{i+1}-t_{i}} \\{} & {} \quad -\frac{1}{\sigma ^{2}}\sum _{i\in {\mathbb {N}} [0,{{\hat{s}}T}]}\frac{\left( {{\mathcal {Z}}_{1i}(p_{0})\varvec{{\mu }}_{1}(p_{0}) -{\mathcal {Z}}_{1i}(p_{0})\hat{\varvec{{\mu }}}_{1}(p_{0})}\right) ^{2}}{t_{i+1}-t_{i}}\\{} & {} \quad -\frac{1}{\sigma ^{2}}\sum _{i\in {\mathbb {N}} [{{\hat{s}}T},T]}\frac{\left( {{\mathcal {Z}}_{2i}(p_{0})\varvec{{\mu }}_{2}(p_{0}) -{\mathcal {Z}}_{2i}(p_{0})\hat{\varvec{{\mu }}}_{2}(p_{0})}\right) ^{2}}{t_{i+1}-t_{i}} \\{} & {} \quad +\frac{1}{\sigma ^{2}}\sum _{i\in {\mathbb {N}} [0,T]}\frac{2\varepsilon _{i}\left( Z_{i}(p_{0})\varvec{{\theta }}(p_{0})-Z_{i}(p_{0}){\hat{\theta }}(p_{0})\right) }{t_{i+1}-t_{i}}\\{} & {} \quad -\frac{1}{\sigma ^{2}}\sum _{i\in {\mathbb {N}} [0,{{\hat{s}}T}]}\frac{2\varepsilon _{i}\left( {{\mathcal {Z}}_{1i}(p_{0})\varvec{{\mu }}_{1}(p_{0}) -{\mathcal {Z}}_{1i}(p_{0})\hat{\varvec{{\mu }}}_{1}(p_{0})}\right) }{t_{i+1}-t_{i}} \\{} & {} \quad -\frac{1}{\sigma ^{2}}\sum _{i\in {\mathbb {N}} [{{\hat{s}}T},T]}\frac{2\varepsilon _{i}\left( {{\mathcal {Z}}_{2i}(p_{0})\varvec{{\mu }}_{2}(p_{0}) -{\mathcal {Z}}_{2i}(p_{0})\hat{\varvec{{\mu }}}_{2}(p_{0})}\right) }{t_{i+1}-t_{i}}-(p_{0}+1)\textrm{log}(N). \end{aligned}$$

    From Proposition 2.9, \({\hat{\theta }}(p_{0})=\varvec{{\theta }}(p_{0})+\sigma Q^{-1}(s,T,p_{0})W(s,T,p_{0}),\) we have

    $$\begin{aligned}{} & {} \frac{1}{\sigma ^{2}}\sum _{i\in {\mathbb {N}} [0,T]}\left( Z_{i}(p_{0})\varvec{{\theta }}(p_{0})-Z_{i}(p_{0}){\hat{\theta }}(p_{0})\right) ^{2}/(t_{i+1}-t_{i}) \\{} & {} \quad =\frac{1}{T}(TQ^{-1}(s,T,p_{0}))\frac{1}{\sqrt{T}}W(s,T,p_{0}))^{\top }\\{} & {} \quad \frac{1}{T}\sum _{i\in {\mathbb {N}} [0,T]}\frac{Z_{i}^{\top }(p_{0})Z_{i}(p_{0})}{t_{i+1}-t_{i}}(TQ^{-1}(s,T,p_{0}))\frac{1}{\sqrt{T}}W(s,T,p_{0})). \end{aligned}$$

    By combining Propositions 2.8, A.2, A.3, A.4 and A.8, we get

    $$\begin{aligned} \sum _{i\in {\mathbb {N}} [0,T]}\left( Z_{i}(p_{0})\varvec{{\theta }}(p_{0})-Z_{i}(p_{0}){\hat{\theta }}(p_{0})\right) ^{2}/(t_{i+1}-t_{i})=O_{\mathrm{{P}}}(\textrm{log}^{2a^{*}}(T)), \end{aligned}$$
    (A.37)
    $$\begin{aligned} \sum _{i\in {\mathbb {N}} [0,{\hat{s}}T]}\left( {{\mathcal {Z}}_{1i}(p_{0})\varvec{{\mu }}_{2}(p_{0})-{\mathcal {Z}}_{1i}(p_{0})\hat{\varvec{{\mu }}}_{2}(p_{0})}\right) ^{2}/(t_{i+1}-t_{i})=O_{\mathrm{{P}}}(\textrm{log}^{2a^{*}}(T)), \\ \sum _{i\in {\mathbb {N}} [{\hat{s}}T,T]}\left( {{\mathcal {Z}}_{2i}(p_{0})\varvec{{\mu }}_{2}(p_{0})-{\mathcal {Z}}_{2i}(p_{0})\hat{\varvec{{\mu }}}_{2}(p_{0})}\right) ^{2}/(t_{i+1}-t_{i})=O_{\mathrm{{P}}}(\textrm{log}^{2a^{*}}(T)). \end{aligned}$$

    Further, from Propositions A.2 and A.6, we have

    $$\begin{aligned} \sum _{i\in {\mathbb {N}} [0,T]}2\varepsilon _{i}\left( Z_{i}(p_{0})\varvec{{\theta }}(p_{0})-Z_{i}(p_{0}){\hat{\theta }}(p_{0})\right) /(t_{i+1}-t_{i})=O_{\mathrm{{P}}}(\textrm{log}^{2a^{*}}(T)), \end{aligned}$$
    (A.38)
    $$\begin{aligned} \sum _{i\in {\mathbb {N}} [0,{{\hat{s}}T}]}2\varepsilon _{i}\left( {{\mathcal {Z}}_{1i}(p_{0})\varvec{{\mu }}_{2}(p_{0})-{\mathcal {Z}}_{1i}(p_{0})\hat{\varvec{{\mu }}}_{2}(p_{0})}\right) /(t_{i+1}-t_{i}) =O_{\mathrm{{P}}}(\textrm{log}^{2a^{*}}(T)), \\ \sum _{i\in {\mathbb {N}} [{{\hat{s}}T},T]}2\varepsilon _{i}\left( {{\mathcal {Z}}_{2i}(p_{0})\varvec{{\mu }}_{2}(p_{0})-{\mathcal {Z}}_{2i}(p_{0})\hat{\varvec{{\mu }}}_{2}(p_{0})}\right) /(t_{i+1}-t_{i})=O_{\mathrm{{P}}}(\textrm{log}^{2a^{*}}(T)). \end{aligned}$$

    Then, together with Assumption 4, \((p_{0}+1)\textrm{log}(N)=O(\textrm{log}^{a}(T))\), we have \(\textrm{IC}(0,p_{0})-\textrm{IC}(1,p_{0})<0,\) whenever T tends to infinity and \(\Delta _{N}\) tends to 0 i.e. \(\lim \limits _{\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}}\textrm{P}\left( \textrm{IC}(0,p_{0})-\textrm{IC}(1,p_{0})>0\right) =0.\)

  2. (2)-(5)

    Similarly, we prove that \(\lim \nolimits _{\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}}\textrm{P}\left( \textrm{IC}(0,p_{0})-\textrm{IC}(1,p_{0})>0\right) =1\) for the cases where (2) \(c=1, p=p^{*}>p_{0}\); (3) \(c=1, p=p_{*}<p_{0}\); (4) \(c=0, p=p^{*}>p_{0}\) and (5) \(c=0, p=p_{*}<p_{0}\).

This completes the proof of first part.

Second, suppose that \(c^{0}=1\), we need to compare \(\textrm{IC}(1,p_{0})\), \(\textrm{IC}(c,p)\), for \(c=0,~\textrm{or}~p\ne p_{0}\).

  1. (1).

    \(c=0, p=p_{0}\):

    $$\begin{aligned}{} & {} \frac{ \textrm{IC}(0,p_{0})-\textrm{IC}(1,p_{0})}{T} =\frac{1}{T\sigma ^{2}}\sum _{i\in {\mathbb {N}} [0,T]}\frac{\left( Z_{i}(p_{0})\varvec{{\mu }}_{1}(p_{0})-Z_{i}(p_{0}){\hat{\theta }}(p_{0})\right) ^{2}}{t_{i+1}-t_{i}} \\{} & {} \quad -\frac{1}{T\sigma ^{2}}\sum _{i\in {\mathbb {N}} [0,{\hat{s}}T]}\frac{{{\mathcal {Z}}_{1i}(p_{0})\left( \varvec{{\mu }}_{1}(p_{0})-\hat{\varvec{{\mu }}}_{1}(p_{0})\right) ^{2}}}{t_{i+1}-t_{i}}\\{} & {} \quad -\frac{1}{T\sigma ^{2}}\sum _{i\in {\mathbb {N}} [{\hat{s}}T,T]}\frac{{{\mathcal {Z}}_{2i}(p_{0})\left( \varvec{{\mu }}_{2}(p_{0})-\hat{\varvec{{\mu }}}_{2}(p_{0})\right) ^{2}}}{t_{i+1}-t_{i}} \\{} & {} \quad +\frac{1}{T\sigma ^{2}}\sum _{i\in {\mathbb {N}} [0,T]}\frac{2\varepsilon _{i}Z_{i}(p_{0})\left( \varvec{{\theta }}(p_{0})-{\hat{\theta }}(p_{0})\right) }{t_{i+1}-t_{i}}\\{} & {} \quad -\frac{1}{T\sigma ^{2}}\sum _{i\in {\mathbb {N}} [0,{\hat{s}}T]}\frac{2\varepsilon _{i}\left( {{\mathcal {Z}}_{1i}}(p_{0})\varvec{{\mu }}_{1}(p_{0})-{{\mathcal {Z}}_{1i}}(p_{0})\hat{\varvec{{\mu }}}_{1}(p_{0})\right) }{t_{i+1}-t_{i}} \\{} & {} \quad -\frac{1}{T\sigma ^{2}}\sum _{i\in {\mathbb {N}} [{\hat{s}}T,T]}\frac{2\varepsilon _{i}\left( {{\mathcal {Z}}_{2i}}(p_{0})\varvec{{\mu }}_{2}(p_{0}) -{{\mathcal {Z}}_{2i}}(p_{0})\hat{\varvec{{\mu }}}_{2}(p_{0})\right) }{t_{i+1}-t_{i}} -\frac{(p_{0}+1)\textrm{log}(N)}{T}. \end{aligned}$$

    From some algebraic computations, one can proves that

    $$\begin{aligned} \sum _{i\in {\mathbb {N}} [0,T]}\left( Z_{i}(p_{0})\varvec{{\theta }}(p_{0})-Z_{i}(p_{0}){\hat{\theta }}(p_{0})\right) ^{2}/((t_{i+1}-t_{i})T\sigma ^{2})\geqslant C_{0}||\varvec{{\mu }}_{1}-\varvec{{\mu }}_{2}||>0 \end{aligned}$$

    for some positive constant \(C_{0}\). Further, since \(\hat{\varvec{{\mu }}}_{1}(p_{0})-\varvec{{\mu }}_{1}(p_{0})=\sigma Q_{T}({\hat{s}})W_{T}({\hat{s}})\)

    $$\begin{aligned}{} & {} \sum _{i\in {\mathbb {N}} [0,{\hat{s}}T]}\left( {{\mathcal {Z}}_{1i}}(p_{0})\varvec{{\mu }}_{1}(p_{0})-{{\mathcal {Z}}_{1i}}(p_{0})\hat{\varvec{{\mu }}}_{1}(p_{0})\right) ^{2}/((t_{i+1}-t_{i})T\sigma ^{2}) \\{} & {} \quad =\frac{1}{T}(TQ_{T}^{-1}({\hat{s}},p_{0})\frac{1}{\sqrt{T}}W_{T}({\hat{s}},p_{0}))^{\top } \frac{1}{T}\sum _{i\in {\mathbb {N}} [0,{\hat{s}}T]}\frac{{{\mathcal {Z}}_{1i}^{\top }(p_{0}){\mathcal {Z}}_{1i}(p_{0})}}{t_{i+1}-t_{i}}(TQ_{T}^{-1}({\hat{s}},p_{0})\\{} & {} \quad \frac{1}{\sqrt{T}}W_{T}({\hat{s}},p_{0})). \end{aligned}$$

    By Propositions A.3, A.4 and  A.8, we get \(\left| \left| \sum \nolimits _{i\in {\mathbb {N}} [0,{\hat{s}}T]}{{\mathcal {Z}}_{1i}^{\top }(p_{0}){\mathcal {Z}}_{1i}(p_{0})}/((t_{i+1}-t_{i})T)\right| \right| =O_{\mathrm{{P}}}(1)\), \(\Vert TQ_{T}^{-1}({\hat{s}},p_{0})\Vert =O_{\mathrm{{P}}}(1)\), and then, together with Proposition A.2, we have \(\Vert W_{T}(s,p)\Vert /T=o_{\mathrm{{P}}}(1)\), \(\Vert W_{T}(1,p)-W_{T}(s,p)\Vert /T=o_{\mathrm{{P}}}(1)\), \(\displaystyle \sum _{i\in {\mathbb {N}} [0,{\hat{s}}T]}\left( {{\mathcal {Z}}_{1i}}(p_{0})\varvec{{\mu }}_{1}(p_{0})-{{\mathcal {Z}}_{1i}}(p_{0})\hat{\varvec{{\mu }}}_{1}(p_{0})\right) ^{2}/(t_{i+1}-t_{i})=O_{\mathrm{{P}}}(\textrm{log}^{a^{*}}(T))\), and \(\displaystyle \sum _{i\in {\mathbb {N}} [{\hat{s}}T,T]}\left( {{\mathcal {Z}}_{2i}}(p_{0})\varvec{{\mu }}_{2}(p_{0})-{{\mathcal {Z}}_{2i}}(p_{0})\hat{\varvec{{\mu }}}_{2}(p_{0})\right) ^{2}/(t_{i+1}-t_{i})=O_{\mathrm{{P}}}(\textrm{log}^{a^{*}}(T))\). Hence, by using Proposition A.6, we get \(\displaystyle \sum _{i\in {\mathbb {N}} [0,T]}2\varepsilon _{i}Z_{i}(p_{0})\left( \varvec{{\theta }}(p_{0})-{\hat{\theta }}(p_{0})\right) /( (t_{i+1}-t_{i})T)\xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}]{\mathrm{{P}}}0\),

    $$\begin{aligned}{} & {} \left( \frac{1}{T}\sum _{i\in {\mathbb {N}} [0,{\hat{s}}T]}\frac{2\varepsilon _{i}{{\mathcal {Z}}_{1i}}(p_{0})\left( \varvec{{\mu }}_{1}(p_{0})-\hat{\varvec{{\mu }}}_{1}(p_{0})\right) }{t_{i+1}-t_{i}},\right. \\{} & {} \left. \frac{1}{T}\sum _{i\in {\mathbb {N}} [{\hat{s}}T,T]}\frac{2\varepsilon _{i}{{\mathcal {Z}}_{2i}}(p_{0})\left( \varvec{{\mu }}_{2}(p_{0})-\hat{\varvec{{\mu }}}_{2}(p_{0})\right) }{t_{i+1}-t_{i}}\right) \\{} & {} \quad \xrightarrow [\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}] {\mathrm{{P}}}\varvec{{0}}. \end{aligned}$$

    Therefore, by Assumption 4, we get \( \textrm{IC}(0,p_{0})-\textrm{IC}(1,p_{0})/T>0,\) whenever T is large and \(\Delta _{N}\) is arbitrary small, i.e. \(\lim \limits _{\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}}\textrm{P}\left( \textrm{IC}(0,p_{0})-\textrm{IC}(1,p_{0})>0\right) =1.\)

  2. (2)-(5).

    Similarly, we prove that \(\lim \limits _{\begin{array}{c} T\rightarrow \infty \\ \Delta _{N}\rightarrow 0 \end{array}}\textrm{P}\left( \textrm{IC}(0,p_{0})-\textrm{IC}(1,p_{0})>0\right) =1\) for the cases where (2) \(c=0, p=p^{*}>p_{0}\); (3) \(c=0, p=p_{*}<p_{0}\); (4) \(c=1, p=p^{*}>p_{0}\) and (5) \(c=1, p=p_{*}<p_{0}\).

\(\square \)

We establish the following proposition, which plays important role in proving that \({\hat{s}}\) is a consistent estimator of the parameter s.

Proposition A.7

Let \(\phi =sT\). There exists an \(L_{0}>0\), such that for all \(L>L_{0}\), the minimum eigenvalues of the matrices \(\sum \nolimits _{{i}\in {\mathbb {N}}[\phi ,\phi +L]}{Z_{2i}^{\top }(p_{0})Z_{2i}}(p_{0})/((t_{i+1}-t_{i})L)\) and of \(\sum \nolimits _{{i}\in {\mathbb {N}}[\phi -L,\phi ]}{Z_{1i}^{\top }(p_{0})Z_{1i}}(p_{0})/((t_{i+1}-t_{i})L)\) and their respective continuous time versions \(Q_{[\phi ,\phi +L]}(p_{0})/L\) and \(Q_{[\phi -L,\phi ]}(p_{0})/L\) are all bounded away from 0.

The proof follows from Lemma A.1. Note that, by Proposition A.7, we weaken the assumption in Chen et al. (2020), Chen et al. (2018). More precisely, the established result shows that the assumptions in the quoted paper are stronger than needed.

Lemma A.3

Let \({\hat{s}}\) be \({\mathscr {F}}_{T}-\)measurable and a consistent estimator of s, with \(0\leqslant {\hat{s}}\leqslant 1\) a.s. and let \(\{\varvec{{b}}(t),t\geqslant 0\}\) be deterministic and bounded function. Then,

$$\begin{aligned} \frac{1}{\sqrt{T}}\int _{0}^{{\hat{s}}T}\varvec{{b}}(t)dB_{t}-\frac{1}{\sqrt{T}}\int _{0}^{sT}\varvec{{b}}(t)dB_{t}\xrightarrow [T\rightarrow \infty ]{L^{m}}0. \end{aligned}$$

Proof

Let \(G(T)=T^{-m/2}{\mathbb {E}}\left[ \left| \displaystyle \int _{0}^{{\hat{s}}T}\varvec{{b}}(t)dB_{t}-\int _{0}^{sT}\varvec{{b}}(t)dB_{t}\right| ^{m}\right] \). We need to prove that \(\lim \nolimits _{T\rightarrow \infty }G(T)=0\). Let \(||\varvec{{b}}(t)||\leqslant K_{b}\) and \(\epsilon >0\), we have \(\lim \limits _{T\rightarrow \infty }\textrm{P}\left( |{\hat{s}}-s|\geqslant \epsilon /(4K_{b}^{2})\right) =0\). We have

\(G(T)=G_{11}(T)+G_{12}(T)+G_{21}(T)+G_{22}(T)\) where

$$\begin{aligned} \begin{array}{l} G_{11}(T)=T^{-m/2}{\mathbb {E}}\left[ \left| \int _{0}^{{\hat{s}}T}\varvec{{b}}(t)dB_{t}-\int _{0}^{sT}\varvec{{b}}(t)dB_{t}\right| ^{m}{\mathbb {I}}_{\{{\hat{s}}>s\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\leqslant \frac{\epsilon }{4K_{b}^{2}}\}}\right] \\ G_{12}(T)=T^{-m/2}{\mathbb {E}}\left[ \left| \int _{0}^{{\hat{s}}T}\varvec{{b}}(t)dB_{t}-\int _{0}^{sT}\varvec{{b}}(t)dB_{t}\right| ^{m}{\mathbb {I}}_{\{{\hat{s}}>s\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\geqslant \frac{\epsilon }{4K_{b}^{2}}\}}\right] \\ G_{21}(T)=T^{-m/2}{\mathbb {E}}\left[ \left| \int _{0}^{{\hat{s}}T}\varvec{{b}}(t)dB_{t}-\int _{0}^{sT}\varvec{{b}}(t)dB_{t}\right| ^{m}{\mathbb {I}}_{\{{\hat{s}}<s\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\leqslant \frac{\epsilon }{4K_{b}^{2}}\}}\right] \\ G_{22}(T)=T^{-m/2}{\mathbb {E}}\left[ \left| \int _{0}^{{\hat{s}}T}\varvec{{b}}(t)dB_{t}-\int _{0}^{sT}\varvec{{b}}(t)dB_{t}\right| ^{m}{\mathbb {I}}_{\{{\hat{s}}<s\}}{\mathbb {I}}_{\{|{\hat{s}}-s|\geqslant \frac{\epsilon }{4K_{b}^{2}}\}}\right] . \end{array} \end{aligned}$$
(A.39)

By using Cauchy–Schwarz’s inequality and Burkholder–Davis–Gundy’s inequality, we prove that \(\lim \limits _{T\rightarrow \infty }(G_{11}(T)=\lim \limits _{T\rightarrow \infty }G_{12}(T)=\lim \limits _{T\rightarrow \infty }G_{21}(T) =\lim \limits _{T\rightarrow \infty }G_{22}(T))=0.\) This completes the proof. \(\square \)

Lemma A.4

Suppose that Assumptions 1–4 hold and let \({\hat{s}}\) be a consistent estimator of s, with \(0<{\hat{s}}<1\) a.s. Then, \(\frac{1}{\sqrt{T}}\int _{0}^{{\hat{s}}T}(\ln X(t))dB_{t}-\frac{1}{\sqrt{T}}\int _{0}^{sT}(\ln X(t))dB_{t}\xrightarrow [T\rightarrow \infty ]{L^{m/2}}0\).

Proof

Since \({\hat{s}}\) is \({\mathscr {F}}_{T}-\)measurable and a consistent estimator of s, let \(\epsilon >0\), for every \(0<\delta <\min \{s,1-s\}\), we have \(\textrm{P}(|{\hat{s}}-s|\geqslant \delta )<\epsilon \), for sufficiently large T. Then,

$$\begin{aligned}{} & {} {\mathbb {E}}\left[ \left| \frac{1}{\sqrt{T}}\int _{0}^{{\hat{s}}T}(\ln X(t))dB_{t}-\frac{1}{\sqrt{T}}\int _{0}^{sT}(\ln X(t))dB_{t}\right| ^{m/2}\right] \end{aligned}$$
$$\begin{aligned}{} & {} \quad ={\mathbb {E}}\left[ \left| \frac{1}{\sqrt{T}}\int _{0}^{{\hat{s}}T}(\ln X(t))dB_{t}-\frac{1}{\sqrt{T}}\int _{0}^{sT}(\ln X(t))dB_{t}\right| ^{m/2}{\mathbb {I}}_{\{|{\hat{s}}-s|\geqslant \delta \}}\right] \end{aligned}$$
(A.40)
$$\begin{aligned}{} & {} \qquad +{\mathbb {E}}\left[ \left| \frac{1}{\sqrt{T}}\int _{0}^{{\hat{s}}T}(\ln X(t))dB_{t}-\frac{1}{\sqrt{T}}\int _{0}^{sT}(\ln X(t))dB_{t}\right| ^{m/2}{\mathbb {I}}_{\{|{\hat{s}}-s|<\delta \}}\right] . \end{aligned}$$
(A.41)

Further, one proves that

$$\begin{aligned}{} & {} (A.40) \leqslant T^{-m/4}{\mathbb {E}}\left[ \sup \limits _{0\leqslant u\leqslant sT}\left| \int _{u}^{sT}(\ln X(t))dB_{t}\right| ^{m/2}{\mathbb {I}}_{\{{\hat{s}}\leqslant s-\delta \}}\right] \nonumber \\{} & {} \qquad +T^{-m/4} {\mathbb {E}}\left[ \left| \sup \limits _{sT\leqslant u\leqslant T}\int _{sT}^{u}(\ln X(t))dB_{t}\right| ^{m/2}{\mathbb {I}}_{\{{\hat{s}}\geqslant s+\delta \}}\right] . \\{} & {} \quad (A.41) \leqslant T^{-m/4}{\mathbb {E}}\left[ \sup \limits _{(s-\delta )T<u<sT}\left| \int _{u}^{sT}(\ln X(t))dB_{t}\right| ^{m/2}{\mathbb {I}}_{\{s-\delta<{\hat{s}}\leqslant s\}}\right] \\{} & {} \quad +T^{-m/4}{\mathbb {E}}\left[ \sup \limits _{sT<u<(s+\delta )T}\left| \int _{sT}^{u}(\ln X(t))dB_{t}\right| ^{m/2}{\mathbb {I}}_{\{s<{\hat{s}}\leqslant s+\delta \}}\right] \end{aligned}$$

The proof is completed by combining Cauchy–Schwartz’s inequality, Burkholder-Davis-Gundy’s inequality and Jensen’s inequality. \(\square \)

The following two propositions show that \(\frac{1}{T}Q({\hat{s}},T)-\frac{1}{T}Q({s},T)\xrightarrow [T\rightarrow \infty ]{L^{m/2}}0\).

Proposition A.8

Suppose that Assumptions 1–4 hold and \({\hat{s}}\) is a consistent estimator of s, with \(0<{\hat{s}}<1\) a.s. Then, (1). \(\displaystyle \frac{1}{T}\int _{0}^{{\hat{s}}T}b^{\top }(t)\varvec{{b}}(t)dt-\frac{1}{T}\int _{0}^{sT}b^{\top }(t)\varvec{{b}}(t)dt\xrightarrow [T\rightarrow \infty ]{L^{m}}\textbf{0}\),

(2) \(\displaystyle \frac{1}{T}\int _{0}^{{\hat{s}}T}(\varvec{{b}}(t),-\ln X(t))^{\top }(\ln X(t))dt-\frac{1}{T}\int _{0}^{sT}(\varvec{{b}}(t),-\ln X(t))^{\top }(\ln X(t))dt\xrightarrow [T\rightarrow \infty ]{L^{m/2}}\textbf{0}\).

Proof

The proof follows by combining the consistency of \({\hat{s}}\) and Cauchy–Schwarz’s inequality along with some algebraic computations. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Y., Nkurunziza, S. Inference in generalized exponential O–U processes with change-point. Stat Inference Stoch Process 27, 63–102 (2024). https://doi.org/10.1007/s11203-023-09293-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-023-09293-z

Keywords

Navigation