Log in

Resonant electron capture negative ion mass spectrometry: the state of the art and the potential for solving analytical problems

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Resonant electron capture negative ion mass spectrometry (REC NI MS) is a highly informative method of investigation of low-energy electron-molecule reactions, thermochemistry, and kinetics of negative ion formation and decay. The review includes consideration of the physical principles and specific features of the method, a brief historical survey, terminological issues, and an outline of instrumentation. The potential of REC NI MS for solving structural and analytical problems is analyzed and the advantages of the method over classical positive ion MS are demonstrated. The results of analytical studies of organic and organoelement compounds using various types of mass spectrometers are reviewed. The reasons for low adoption of REC NI MS are analyzed and arguments are presented in favor of introducing the method into analytical practice as an additional tool implemented on the available instruments. Prospects for the development and improvement of REC NI MS for solving unconventional problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Lebedev, Mass-spektrometriya v organicheskoy khimii [Mass Spectrometry in Organic Chemistry], Tekhnosfera, Moscow, 2015, 704 pp. (in Russian).

    Google Scholar 

  2. J. J. Thomson, M. A. FRS, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 6, 1907, 13(77), 561; DOI: https://doi.org/10.1080/14786440709463633.

    Article  Google Scholar 

  3. J. J. Thomson, Proc. Roy. Soc., Sect. A, 1913, 89, 1; DOI: https://doi.org/10.1098/rspa.1913.0057.

    CAS  Google Scholar 

  4. H. D. Hagstrum, Rev. Mod. Phys., 1951, 23, 185; DOI: https://doi.org/10.1103/RevModPhys.23.185.

    Article  CAS  Google Scholar 

  5. V. H. Dibeler, R. M. Reese, F. L. Mohler, J. Res. Natl. Bur. Stand., 1956, 57, 113.

    Article  CAS  Google Scholar 

  6. L. M. Branscomb, in Advances in Electronics and Electron Physics, Ed. L. Marton, Academic Press, 1957, 9, pp. 43–94; DOI: https://doi.org/10.1016/S0065-2539(08)60163-8.

  7. N. S. Buchelnikova, Uspekhi fiz. nauk [Sov. Phys.-Usp.], 1958, 65, 351 (in Russian).

    Article  CAS  Google Scholar 

  8. V. I. Khvostenko, I. I. Furlei, Theor. Exp. Chem., 1971, 4, 522.

    Article  Google Scholar 

  9. V. I. Khvostenko, G. A. Tolstikov, Russ. Chem. Rev., 1976, 45, 127; DOI: https://doi.org/10.1070/RC1976v045n02ABEH002615.

    Article  Google Scholar 

  10. V. I. Khvostenko, Mass-spektrometriya otritsatel’nykh ionov v organicheskoy khimii [Negative Ion Mass Spectrometry in Organic Chemistry], Nauka, Moscow, 1981, 159 pp. (in Russian).

    Google Scholar 

  11. V. A. Mazunov, P. V. Shchukin, R. V. Khatymov, M. V. Muftakhov, Mass-spektrometriya [Mass Spectrometry], 2006, 3, 11 (in Russian).

    CAS  Google Scholar 

  12. C. E. Melton, in Mass Spectrometry of Organic Ions, Ed. F. W. McLafferty, Academic Press, New York—London, 1963, pp. 163–205.

  13. L. G. Christophorou, R. N. Compton, G. S. Hurst, P. W. Reinhardt, J. Chem. Phys., 1965, 43, 4273; DOI: https://doi.org/10.1063/1.1696685.

    Article  CAS  Google Scholar 

  14. T. Satoru, Y. Akira, K. Michihiro, Bull. Chem. Soc. Jpn., 1969, 42, 3115; DOI: https://doi.org/10.1246/bcsj.42.3115.

    Article  Google Scholar 

  15. M. von Ardenne, K. Steinfelder, R. Tummler, Elektronenanlagerungerungs-Massenspektrographie Organischer Substanzen, Springer-Verlag, New York, 1971, 403 pp.; DOI: https://doi.org/10.1007/978-3-642-65121-2.

    Book  Google Scholar 

  16. J. H. Bowie, Mass Spectrom. Rev., 1984, 3, 161; DOI: https://doi.org/10.1002/mas.1280030202.

    Article  CAS  Google Scholar 

  17. D. R. Dakternieks, I. W. Fraser, J. L. Garnett, I. K. Gregor, Talanta, 1976, 23, 701; DOI: https://doi.org/10.1016/0039-9140(76)80065-3.

    Article  CAS  PubMed  Google Scholar 

  18. R. C. Dougherty, C. R. Weisenberger, J. Am. Chem. Soc., 1968, 90, 6570; DOI: https://doi.org/10.1021/ja01025a090.

    Article  CAS  Google Scholar 

  19. D. F. Hunt, G. C. Stafford, F. W. Crow, J. W. Russell, Anal. Chem., 1976, 48, 2098; DOI: https://doi.org/10.1021/ac50008a014.

    Article  CAS  Google Scholar 

  20. E. Illenberger, H. U. Scheunemann, H. Baumgärtel, Chem. Phys., 1979, 37, 21; DOI: https://doi.org/10.1016/0301-0104(79)80003-8.

    Article  CAS  Google Scholar 

  21. J. A. Laramée, P. Mazurkiewicz, V. Berkout, M. L. Deinzer, Mass Spectrom. Rev., 1996, 15, 15; DOI: https://doi.org/10.1002/(sici)1098-2787(1996)15:1<15::aid-mas2>3.0.co;2-e.

    Article  PubMed  Google Scholar 

  22. L. Z. Khatymova, V. A. Mazunov, R. V. Khatymov, Istoriya nauki i tekhniki [History of Science and Technology], 2011, No. 3, 11 (in Russian).

  23. M. V. Muftakhov, L. Z. Khatymova, R. V. Khatymov, V. A. Mazunov, Izv. UNTs RAN [Proc. Ufa Scientific Centre of the RAS], 2014, Iss. 4, 38 (in Russian).

  24. Yu. V. Vasil’ev, B. Figard, M. L. Deinzer, in The Encyclopedia of Mass Spectrometry, 1st ed., 6, Eds M. Gross, L. R. Caprioli, Elsiever Science, 2006, 1030 pp.

  25. R. V. Khatymov, M. V. Muftakhov, P. V. Shchukin, Rapid Commun. Mass Spectrom., 2017, 31, 1729; DOI: https://doi.org/10.1002/rcm.7945.

    Article  CAS  PubMed  Google Scholar 

  26. R. V. Khatymov, P. V. Shchukin, M. V. Muftakhov, I. K. Yakushchenko, O. V. Yarmolenko, E. Yu. Pankratyev, Phys. Chem. Chem. Phys., 2020, 22, 3073; DOI: https://doi.org/10.1039/C9CP05397B.

    Article  CAS  PubMed  Google Scholar 

  27. V. A. Mazunov, V. I. Khvostenko, V. S. Falko, V. S. Chanbarisov, Bull. Acad. Sci. USSR. Div. Chem. Sci., 1981, 30, 1964; DOI: https://doi.org/10.1007/BF00963439.

    Article  Google Scholar 

  28. S. P. Palii, Yu. V. Vasil’ev, N. L. Asfandiarov, K. M. Indrichan, N. V. Gerbeleu, V. A. Mazunov, A. A. Dobrov, Russ. J. Coord. Chem., 1996, 22, 502.

    CAS  Google Scholar 

  29. V. G. Voinov, Yu. V. Vasil’ev, J. Morré, D. F. Barofsky, M. L. Deinzer, M. Gonin, T. F. Egan, K. Führer, Anal. Chem., 2003, 75, 3001; DOI: https://doi.org/10.1021/ac030019v.

    Article  CAS  PubMed  Google Scholar 

  30. J. A. Laramée, R. B. Cody, M. L. Deinzer, in Encyclopedia of Analytical Chemistry, Eds R. A. Meyers, O. D. Sparkman, John Wiley & Sons Ltd., Chichester, 2000, pp. 11651–11679; DOI: https://doi.org/10.1002/9780470027318.a6005.

  31. D. A. Sainiev, E. U. Shafikova, M. F. Abdullin, E. M. Tsyrlina, S. A. Pshenichnyuk, V. K. Mavrodiev, I. I. Furlei, M. S. Yunusov, High Energy Chem., 2016, 50, 433; DOI: https://doi.org/10.1134/S0018143916060151.

    Article  CAS  Google Scholar 

  32. S. V. Pikhtovnikov, V. K. Mavrodiev, S. P. Ivanov, V. P. Krivonogov, Yu. P. Murinov, I. I. Furlei, Russ. Chem. Bull., 2005, 54, 1402; DOI: https://doi.org/10.1007/s11172-005-0418-x.

    Article  CAS  Google Scholar 

  33. R. T. Aplin, H. Budzikiewicz, C. Djerassi, J. Am. Chem. Soc., 1965, 87, 3180; DOI: https://doi.org/10.1021/ja01092a031.

    Article  CAS  Google Scholar 

  34. V. G. Voinov, Yu. V. Vasil’ev, H. Ji, B. Figard, J. Morré, T. F. Egan, D. F. Barofsky, M. L. Deinzer, Anal. Chem., 2004, 76, 2951; DOI: https://doi.org/10.1021/ac030324g.

    Article  CAS  PubMed  Google Scholar 

  35. F. Zappa, M. Beikircher, A. Mauracher, S. Denifl, M. Probst, N. Injan, J. Limtrakul, A. Bacher, O. Echt, T. D. Märk, P. Scheier, T. A. Field, K. Graupner, ChemPhysChem, 2008, 9, 607; DOI: https://doi.org/10.1002/cphc.200700720.

    Article  CAS  PubMed  Google Scholar 

  36. K. Graupner, T. A. Field, A. Mauracher, P. Scheier, A. Bacher, S. Denifl, F. Zappa, T. D. Märk, J. Chem. Phys., 2008, 128, 104304; DOI: https://doi.org/10.1063/1.2884346.

    Article  CAS  PubMed  Google Scholar 

  37. B. Ómarsson, E. H. Bjarnason, S. A. Haughey, T. A. Field, A. Abramov, P. Klüpfel, H. Jónsson, O. Ingólfsson, Phys. Chem. Chem. Phys., 2013, 15, 4754; DOI: https://doi.org/10.1039/C3CP44320E.

    Article  PubMed  CAS  Google Scholar 

  38. J. H. Bowie, in Experimental Mass Spectrometry, Ed. D. H. Russell, Springer, Boston, 1994, pp. 1–38; DOI: https://doi.org/10.1007/978-1-4899-2569-5.

  39. R. V. Khatymov, M. V. Muftakhov, P. V. Schukin, V. A. Mazunov, Russ. Chem. Bull., 2004, 53, 738; DOI: https://doi.org/10.1023/B:RUCB.0000037835.28726.0a.

    Article  CAS  Google Scholar 

  40. R. V. Khatymov, R. F. Tuktarov, A. V. Pogulay, M. V. Muftakhov, Russ. J. Phys. Chem. B, 2009, 3, 770; DOI: https://doi.org/10.1134/s1990793109050108.

    Article  Google Scholar 

  41. R. V. Khatymov, R. F. Tuktarov, P. V. Shchukin, M. V. Muftakhov, Bashkirsk. khim. zhurn. [Bashkir Chem. J.], 2010, 17, 16 (in Russian).

    CAS  Google Scholar 

  42. P. V. Shchukin, M. V. Muftakhov, R. V. Khatymov, Mass-spektrometriya [Mass Spectrometry], 2013, 10, 158 (in Russian).

    CAS  Google Scholar 

  43. V. Yu. Markov, V. E. Aleshina, A. Ya. Borschevskiy, R. V. Khatymov, R. F. Tuktarov, A. V. Pogulay, A. L. Maximov, S. V. Kardashev, I. N. Ioffe, S. M. Avdoshenko, E. I. Dorozhkin, A. A. Goryunkov, D. V. Ignat’eva, N. I. Gruzinskaya, L. N. Sidorov, Int. J. Mass Spectrom., 2006, 251, 16; DOI: https://doi.org/10.1016/j.ijms.2005.12.025.

    Article  CAS  Google Scholar 

  44. P. V. Shchukin, M. V. Muftakhov, R. V. Khatymov, A. V. Pogulay, Int. J. Mass Spectrom., 2008, 273, 1; DOI: https://doi.org/10.1016/j.ijms.2008.02.004.

    Article  CAS  Google Scholar 

  45. M. V. Muftakhov, P. V. Shchukin, Russ. Chem. Bull., 2011, 60, 1965; DOI: https://doi.org/10.1007/s11172-011-0298-1.

    Article  CAS  Google Scholar 

  46. M. V. Muftakhov, P. V. Shchukin, Russ. Chem. Bull., 2010, 59, 896; DOI: https://doi.org/10.1007/s11172-010-0183-3.

    Article  CAS  Google Scholar 

  47. M. V. Muftakhov, P. V. Shchukin, Russ. Chem. Bull., 2014, 63, 642; DOI: https://doi.org/10.1007/s11172-014-0486-x.

    Article  CAS  Google Scholar 

  48. A. Mauracher, S. Denifl, A. Edtbauer, M. Hager, M. Probst, O. Echt, T. D. Märk, P. Scheier, T. A. Field, K. Graupner, J. Chem. Phys., 2010, 133, 244302; DOI: https://doi.org/10.1063/1.3514931PubMed.

    Article  CAS  PubMed  Google Scholar 

  49. H. D. Flosadóttir, S. Denifl, F. Zappa, N. Wendt, A. Mauracher, A. Bacher, H. Jónsson, T. D. Märk, P. Scheier, O. Ingólfsson, Angew. Chem., Int. Ed., 2007, 46, 8057; DOI: https://doi.org/10.1002/anie.200703327.

    Article  CAS  Google Scholar 

  50. S. Pshenichnyuk, N. L. Asfandiarov, Phys. Chem. Chem. Phys., 2020; DOI: https://doi.org/10.1039/D0CP02647F.

  51. M. V. Muftakhov, Yu. V. Vasil’ev, V. A. Mazunov, Rapid Commun. Mass Spectrom., 1999, 13, 1104; DOI: https://doi.org/10.1002/(sici)1097-0231(19990630)13:12<1104::aid-rcm619>3.0.co;2-c.

    Article  CAS  PubMed  Google Scholar 

  52. M. V. Muftakhov, Yu. V. Vasil’ev, R. V. Khatymov, V. A. Mazunov, V. V. Takhistov, O. V. Travkin, E. V. Yakovleva, Rapid Commun. Mass Spectrom., 1999, 13, 912; DOI: https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<912::AID-RCM585>3.0.CO;2-W.

    Article  CAS  Google Scholar 

  53. M. V. Muftakhov, R. V. Khatymov, V. A. Mazunov, D. A. Ponomarev, V. V. Takhistov, L. P. Vatlina, Rapid Commun. Mass Spectrom., 2000, 14, 1482; DOI: https://doi.org/10.1002/1097-0231(20000830)14:16<1482::AID-RCM50>3.0.CO;2-E.

    Article  CAS  PubMed  Google Scholar 

  54. M. V. Muftakhov, R. V. Khatymov, V. A. Mazunov, V. V. Takhistov, D. A. Ponomarev, Chem. Phys. Rep., 2001, 19, 2287.

    Google Scholar 

  55. R. V. Khatymov, M. V. Muftakhov, P. V. Schukin, V. A. Mazunov, Russ. Chem. Bull., 2003, 52, 1974; DOI: https://doi.org/10.1023/B:RUCB.0000009641.29142.3c.

    Article  CAS  Google Scholar 

  56. R. V. Khatymov, M. V. Muftakhov, V. A. Mazunov, Rapid Commun. Mass Spectrom., 2003, 17, 2327; DOI: https://doi.org/10.1002/rcm.1197.

    Article  CAS  PubMed  Google Scholar 

  57. V. V. Takhistov, D. A. Ponomarev, Organicheskaya mass-spektrometriya [Organic Mass Spectrometry], Izd-vo VVM, St. Petersburg, 2005, 344 pp. (in Russian).

    Google Scholar 

  58. D. Ponomarev, V. Takhistov, J. Mol. Struct., 2006, 784, 177; DOI: https://doi.org/10.1016/j.molstruc.2005.09.018.

    Article  CAS  Google Scholar 

  59. P. V. Shchukin, M. V. Muftakhov, J. Morré, M. L. Deinzer, Yu. V. Vasil’ev, J. Chem. Phys., 2010, 132, 234306; DOI: https://doi.org/10.1063/1.3436719.

    Article  PubMed  CAS  Google Scholar 

  60. P. V. Shchukin, M. V. Muftakhov, J. Anal. Chem., 2018, 73, 1376; DOI: https://doi.org/10.1134/s1061934818140101.

    Article  CAS  Google Scholar 

  61. M. V. Muftakhov, P. V. Shchukin, Chem. Phys. Lett., 2020, 739, 136967; DOI: https://doi.org/10.1016/j.cplett.2019.136967.

    Article  CAS  Google Scholar 

  62. M. V. Muftakhov, P. V. Shchukin, Techn. Phys., 2018, 63, 747; DOI: https://doi.org/10.1134/S1063784218050171.

    Article  CAS  Google Scholar 

  63. M. V. Muftakhov, P. V. Shchukin, Russ. J. Phys. Chem. A, 2020, 94, 102; DOI: https://doi.org/10.1134/S0036024420010240].

    Article  CAS  Google Scholar 

  64. V. S. Ong, R. A. Hites, Mass Spectrom. Rev., 1994, 13, 259; DOI: https://doi.org/10.1002/mas.1280130305.

    Article  CAS  Google Scholar 

  65. K. R. Jensen, K. J. Voorhees, Mass Spectrom. Rev., 2015, 34, 24; DOI: https://doi.org/10.1002/mas.21395.

    Article  CAS  PubMed  Google Scholar 

  66. E. Illenberger, B. M. Smirnov, Phys.-Usp., 1998, 41, 651; DOI: https://doi.org/10.1070/PU1998v041n07ABEH000418.

    Article  Google Scholar 

  67. R. W. Giese, J. Chromatogr., A, 2000, 892, 329; DOI: https://doi.org/10.1016/S0021-9673(00)00364-2.

    Article  CAS  Google Scholar 

  68. A. Hadjiantoniou, L. G. Christophorou, J. G. Carter, J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys., 1973, 69, 1691; DOI: https://doi.org/10.1039/F29736901691.

    Article  CAS  Google Scholar 

  69. M. Stolar, T. Baumgartner, Phys. Chem. Chem. Phys., 2013, 15, 9007; DOI: https://doi.org/10.1039/C3CP51379C.

    Article  CAS  PubMed  Google Scholar 

  70. R. V. Khatymov, R. F. Tuktarov, V. Yu. Markov, N. A. Romanova, M. V. Muftakhov, JETP Lett., 2012, 96, 659; DOI: https://doi.org/10.1134/s0021364012220055.

    Article  CAS  Google Scholar 

  71. R. V. Khatymov, R. F. Tuktarov, M. V. Muftakhov, in Fizika molekul i kristallov, Vyp. 2 [Physics of Molecules and Crystals, Iss. 2], Ufa, 2014, pp. 64–83 (in Russian).

  72. R. V. Khatymov, P. V. Shchukin, R. F. Tuktarov, M. V. Muftakhov, V. Yu. Markov, I. V. Goldt, Int. J. Mass Spectrom., 2011, 303, 55; DOI: https://doi.org/10.1016/j.ijms.2010.12.014.

    Article  CAS  Google Scholar 

  73. R. F. Tuktarov, R. V. Khatymov, V. Yu. Markov, N. A. Romanova, M. V. Muftakhov, JETP Lett., 2012, 96, 664; DOI: https://doi.org/10.1134/s0021364012220122.

    Article  CAS  Google Scholar 

  74. S. Stein, Anal. Chem., 2012, 84, 7274; DOI: https://doi.org/10.1021/ac301205z.

    Article  CAS  PubMed  Google Scholar 

  75. J. Yinon, H. G. Boettger, W. P. Weber, Anal. Chem., 1972, 44, 2235; DOI: https://doi.org/10.1021/ac60321a017.

    Article  CAS  Google Scholar 

  76. P. Sulzer, A. Mauracher, S. Denifl, F. Zappa, S. Ptasinska, F. Rondino, P. Scheier, T. D. Märk, J. Phys.: Conference Series, 2007, 88, 012075; DOI: https://doi.org/10.1088/1742-6596/88/1/012075.

    Google Scholar 

  77. U. B. Imashev, O. G. Khvostenko, V. G. Lukin, R. R. Vezirov, I. R. Khairudinov, R. F. Tuktarov, V. A. Mazunov, J. Anal. Chem., 1998, 53, 779.

    CAS  Google Scholar 

  78. Yu. V. Vasil’ev, B. J. Figard, J. Morré, M. L. Deinzer, J. Chem. Phys., 2009, 131, 044317; DOI: https://doi.org/10.1063/1.3186747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. M. V. Ivanova, R. V. Khatymov, A. G. Terentyev, in Fizika molekul i kristallov, Vyp. 2 [Physics of Molecules and Crystals, Iss. 2], Ufa, 2014, pp. 108–115 (in Russian).

  80. A. G. Terentyev, R. V. Khatymov, M. V. Ivanova, Izv. UNTs RAN [Proc. Ufa Scientific Centre of the RAS], 2014, Iss. 3, 86 (in Russian).

  81. A. G. Terentyev, Yu. I. Morozik, I. V. Rybal’chenko, A. V. Dudkin, A. O. Smirnov, G. V. Galyaev, J. Anal. Chem., 2016, 71, 1266; DOI: https://doi.org/10.1134/S1061934816130104.

    Article  CAS  Google Scholar 

  82. R. V. Khatymov, M. V. Ivanova, A. G. Terentyev, I. V. Rybal’chenko, Russ. J. Gen. Chem., 2015, 85, 2596; DOI: https://doi.org/10.1134/s1070363215110158.

    Article  CAS  Google Scholar 

  83. A. G. Terentyev, R. V. Khatymov, M. A. Lyogkov, A. V. Dudkin, I. V. Rybal’chenko, J. Anal. Chem., 2017, 72, 1322; DOI: https://doi.org/10.1134/S1061934817130135.

    Article  CAS  Google Scholar 

  84. Patent RU 2616595, Byul. Izobret. [Invention Bull.], 2017, 11 (in Russian).

  85. Patent RU 2664713, Byul. Izobret. [Invention Bull.], 2018, 24 (in Russian).

  86. A. G. Terentyev, A. V. Dudkin, Yu. I. Morozik, Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory. Diagnostics of Materials], 2019, 85(8), 8; DOI: https://doi.org/10.26896/1028-6861-2019-85-8-8-15 (in Russian).

    CAS  Google Scholar 

  87. A. G. Terent’ev, Yu. I. Morozik, A. V. Dudkin, Russ. J. Gen. Chem., 2020, 90, 845; DOI: https://doi.org/10.1134/S107036322005014X.

    Article  Google Scholar 

  88. A. G. Terent’ev, Yu. I. Morozik, M. V. Ivanova, A. V. Dudkin, J. Anal. Chem., 2020, 75, 208; DOI: https://doi.org/10.31857/S0044450220020176.

    Article  Google Scholar 

  89. A. G. Terentyev, R. V. Khatymov, Russ. Chem. Bull., 2020, 69, 899; DOI: https://doi.org/10.1007/s11172-020-2847-y.

    Article  CAS  Google Scholar 

  90. A. G. Terentyev, R. V. Khatymov, Bashkirsk. khim. zhurn. [Bashkir Chem. J.], 2020, 27, No. 2, 4 (in Russian).

    Google Scholar 

  91. R. Balog, J. Langer, S. Gohlke, M. Stano, H. Abdoul-Carime, E. Illenberger, Int. J. Mass Spectrom., 2004, 233, 267; DOI: https://doi.org/10.1016/j.ijms.2003.12.030.

    Article  CAS  Google Scholar 

  92. J. D. Gorfinkiel, S. Ptasinska, J. Phys. B: Atomic, Molecular and Optical Physics, 2017, 50, 182001; DOI: https://doi.org/10.1088/1361-6455/aa8572.

    Article  CAS  Google Scholar 

  93. I. I. Fabrikant, S. Eden, N. J. Mason, J. Fedor, in Advances In Atomic, Molecular, and Optical Physics, Ch. 9, Eds E. Arimondo, C. C. Lin, S. F. Yelin, Elsevier, 2017, 66, pp. 545–657; DOI: https://doi.org/10.1016/bs.aamop.2017.02.002.

  94. I. Bald, J. Langer, P. Tegeder, O. Ingólfsson, Int. J. Mass Spectrom., 2008, 277, 4; DOI: https://doi.org/10.1016/j.ijms.2008.06.013.

    Article  CAS  Google Scholar 

  95. V. N. Kondratyev, N. N. Semenov, Yu. B. Khariton, Elektronnaya khimiya [Electronic Chemistry], Gosizdat, Moscow, Leningrad, 1927, 169 pp. (in Russian).

    Google Scholar 

  96. Yu. N. Demkov, Phys. Lett., 1965, 15, 235.

    Article  CAS  Google Scholar 

  97. B. M. Smirnov, Negative Ions, McGraw Hill, New York, 1982, 170 pp.

    Google Scholar 

  98. G. A. Tolstikov, Yu. F. Baranov, V. A. Mazunov, V. S. Fal’ko, V. I. Khvostenko, G. S. Lomakin, Ocherki istorii mass-spektrometrii [Studies in Mass Spectrometry], Bashkir Scientific Center, Ural Branch of the USSR Academy of Sciences, Ufa, 1988, 158 pp. (in Russian).

    Google Scholar 

  99. V. A. Mazunov, De scientia, doctrina, academia et viris doctis, Academy of Sciences of the Republic of Bashkortostan, Gilem, Ufa, 2010, 328 pp. (in Russian).

    Google Scholar 

  100. V. I. Khvostenko, S. R. Rafikov, Dokl. Phys. Chem., 1975, 220, 107.

    Google Scholar 

  101. C.-j. Xuan, X.-d. Wang, L. **a, B. Wu, H. Li, S.-x. Tian, Chin. J. Chem. Phys., 2014, 27, 628; DOI: https://doi.org/10.1063/1674-0068/27/06/628-630.

    Article  CAS  Google Scholar 

  102. R. N. Compton, L. G. Christophorou, G. S. Hurst, P. W. Reinhardt, J. Chem. Phys., 1966, 45, 4634; DOI: https://doi.org/10.1063/1.1727547.

    Article  CAS  Google Scholar 

  103. Gaseous Molecular Ions: an Introduction to Elementary Processes Induced by Ionization, Eds E. Illenberger, J. Momigny, Springer-Verlag, Berlin—Heidelberg, 1992.

    Google Scholar 

  104. R. Abouaf, R. Paineau, F. Fiquet-Fayard, J. Phys. B, 1976, 9, 303; DOI: https://doi.org/10.1088/0022-3700/9/2/017.

    Article  CAS  Google Scholar 

  105. M. Allan, J. Electr. Spectroscopy Relat. Phenom., 1989, 48, 219; DOI: https://doi.org/10.1016/0368-2048(89)80018-0.

    Article  CAS  Google Scholar 

  106. S. Denifl, S. Ptasinska, B. Sonnweber, P. Scheier, D. Liu, F. Hagelberg, J. Mack, L. T. Scott, T. D. Märk, J. Chem. Phys., 2005, 123, 104308; DOI: https://doi.org/10.1063/1.2008947.

    Article  CAS  PubMed  Google Scholar 

  107. E. Krishnakumar, K. Nagesha, J. Phys. B, 1992, 25, 1645; DOI: https://doi.org/10.1088/0953-4075/25/7/032.

    Article  CAS  Google Scholar 

  108. J. H. Bowie, Org. Mass Spectrom., 1993, 28, 1407; DOI: https://doi.org/10.1002/oms.1210281209.

    Article  CAS  Google Scholar 

  109. J. G. Dillard, Chem. Rev., 1973, 73, 589; DOI: https://doi.org/10.1021/cr60286a002.

    Article  CAS  Google Scholar 

  110. H.-J. Stan, G. Kellner, Biomed. Mass Spectrom., 1982, 9, 483; DOI: https://doi.org/10.1002/bms.1200091106.

    Article  CAS  Google Scholar 

  111. E. A. Stemmler, R. A. Hites, Electron Capture Negative Ion Mass Spectra of Environmental Contaminants and Related Compounds, VCH Publishers, Amsterdam, 1988, 390 pp.

    Google Scholar 

  112. R. A. Hites, Int. J. Mass Spectrom. Ion Proc., 1992, 118-119, 369; DOI: https://doi.org/10.1016/0168-1176(92)85069-C.

    Article  Google Scholar 

  113. W. B. Knighton, L. J. Sears, E. P. Grimsrud, Mass Spectrom. Rev., 1995, 14, 327; DOI: https://doi.org/10.1002/mas.1280140406.

    Article  CAS  Google Scholar 

  114. H. J. Leis, G. Fauler, G. N. Rechberger, W. Windischhofer, Curr. Med. Chem., 2004, 11, 1585; DOI: https://doi.org/10.2174/0929867043365035.

    Article  CAS  PubMed  Google Scholar 

  115. J. H. Bowie, Environ. Health Perspectives, 1980, 36, 89; DOI: https://doi.org/10.1289/ehp.803689.

    Article  CAS  Google Scholar 

  116. S. Dua, J. H. Bowie, in Encyclopedia of Spectroscopy and Spectrometry, 3rd ed., Ed. J. C. Lindon, Academic Press, Amsterdam, 2017, pp. 59–65.

  117. J. A. Laramee, C. A. Kocher, M. L. Deinzer, Anal. Chem., 1992, 64, 2316; DOI: https://doi.org/10.1021/ac00044a003.

    Article  CAS  PubMed  Google Scholar 

  118. V. G. Voinov, in New Advances in Analytical Chemistry, Ed. Atta-ur-Rahman, Harwood Academic Publishers, Amsterdam, 2000, pp. 253–296.

    Google Scholar 

  119. C. D. Havey, M. Eberhart, T. Jones, K. J. Voorhees, J. A. Laramée, R. B. Cody, D. P. Clougherty, J. Phys. Chem. A, 2006, 110, 4413; DOI: https://doi.org/10.1021/jp056166+.

    Article  CAS  PubMed  Google Scholar 

  120. A. V. Pogulyai, Candidate of Science (Phys.-Math.) Thesis, Department of Physics, Bashkir Scientific Center, Ural Branch of the USSR Academy of Sciences, Ufa, 1990, 182 pp. (in Russian).

    Google Scholar 

  121. A. S. Vorob’ev, Candidate of Science (Phys.-Math.) Thesis, Department of Physics, Bashkir Scientific Center, Ural Branch of the USSR Academy of Sciences, Ufa, 1990, 110 pp. (in Russian).

    Google Scholar 

  122. Yu. V. Vasil’ev, Candidate of Science (Phys.-Math.) Thesis, Department of Physics, Bashkir Scientific Center, Ural Branch of the USSR Academy of Sciences, Ufa, 1991, 150 pp. (in Russian).

    Google Scholar 

  123. V. G. Lukin, Candidate of Science (Phys.-Math.) Thesis, Department of Physics, Bashkir Scientific Center, Ural Branch of the USSR Academy of Sciences, Ufa, 1992, 75 pp. (in Russian).

    Google Scholar 

  124. V. A. Mazunov, Doctor of Science (Phys.-Math.) Thesis, Department of Physics, Bashkir Scientific Center, Ural Branch of the USSR Academy of Sciences, Ufa, 1992, 410 pp. (in Russian).

    Google Scholar 

  125. R. F. Tuktarov, Candidate of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 1998, 122 pp. (in Russian).

    Google Scholar 

  126. R. R. Abzalimov, Candidate of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2002, 187 pp. (in Russian).

    Google Scholar 

  127. R. V. Khatymov, Candidate of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2002, 167 pp. (in Russian).

    Google Scholar 

  128. E. P. Nafikova, Candidate of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2004, 123 pp. (in Russian).

    Google Scholar 

  129. O. G. Khvostenko, Doctor of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2005, 302 pp. (in Russian).

    Google Scholar 

  130. P. V. Shchukin, Candidate of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2006, 147 pp. (in Russian).

    Google Scholar 

  131. G. M. Tuymedov, Candidate of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2007, 169 pp. (in Russian).

    Google Scholar 

  132. N. L. Asfandiarov, Doctor of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2010, 252 pp. (in Russian).

    Google Scholar 

  133. M. V. Muftakhov, Doctor of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2012, 282 pp. (in Russian).

    Google Scholar 

  134. S. N. Tseplina, Candidate of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2014, 176 pp. (in Russian).

    Google Scholar 

  135. S. A. Pshenichnyuk, Candidate of Science (Phys.-Math.) Thesis, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2017, 340 pp. (in Russian).

    Google Scholar 

  136. E. A. Burmistrov, Candidate of Science (Chem.) Thesis, Institute of Chemistry, Bashkir Scientific Center, Ural Branch of the USSR Academy of Sciences, 1990, 140 pp. (in Russian).

  137. E. M. Vyrypaev, Candidate of Science (Chem.) Thesis, Institute of Organic Chemistry, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 1998, 150 pp. (in Russian).

    Google Scholar 

  138. V. S. Shmakov, Doctor of Science (Chem.) Thesis, Institute of Organic Chemistry, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2000, 299 pp. (in Russian).

    Google Scholar 

  139. S. V. Pikhtovnikov, Candidate of Science (Chem.) Thesis, Institute of Organic Chemistry, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2004, 138 pp. (in Russian).

    Google Scholar 

  140. V. K. Mavrodiev, Doctor of Science (Chem.) Thesis, Institute of Organic Chemistry, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2005, 256 pp. (in Russian).

    Google Scholar 

  141. M. F. Abdullin, Candidate of Science (Chem.) Thesis, Institute of Organic Chemistry, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2008, 135 pp. (in Russian).

    Google Scholar 

  142. H. Massey, Negative ions, Cambridge University Press, New York, 1976, 759 pp.

    Google Scholar 

  143. T. F. O’Malley, Phys. Rev., 1966, 150, 14; DOI: https://doi.org/10.1103/PhysRev.150.14.

    Article  Google Scholar 

  144. K. Smith, Rep. Progr. Phys., 1966, 29, 373; DOI: https://doi.org/10.1088/0034-4885/29/2/301.

    Article  CAS  Google Scholar 

  145. P. G. Burke, Adv. Phys., 1965, 14, 521; DOI: https://doi.org/10.1080/00018736500101121.

    Article  CAS  Google Scholar 

  146. P. G. Burke, in Advances in Atomic and Molecular Physics, 4, Eds D. R. Bates, I. Estermann, Academic Press, 1968, pp. 173–219; DOI: https://doi.org/10.1016/S0065-2199(08)60188-8.

  147. J. N. Bardsley, F. Mandl, Rep. Progr. Phys., 1968, 31, 471; DOI: https://doi.org/10.1088/0034-4885/31/2/302.

    Article  CAS  Google Scholar 

  148. G. J. Schulz, Rev. Mod. Phys., 1973, 45, 378; DOI: https://doi.org/10.1103/RevModPhys.45.378.

    Article  CAS  Google Scholar 

  149. G. J. Schulz, Rev. Mod. Phys., 1973, 45, 423; DOI: https://doi.org/10.1103/RevModPhys.45.423.

    Article  CAS  Google Scholar 

  150. L. G. Christophorou, J. A. D. Stockdale, J. Chem. Phys., 1968, 48, 1956; DOI: https://doi.org/10.1063/1.1668997.

    Article  CAS  Google Scholar 

  151. L. G. Christophorou, in Advances in Electronics and Electron Physics, 46, Ed. L. Marton, Academic Press, 1978, pp. 55–129; DOI: https://doi.org/10.1016/S0065-2539(08)60411-4.

  152. L. G. Christophorou, Environ. Health Perspectives, 1980, 36, 3; DOI: https://doi.org/10.1289/ehp.80363.

    Article  CAS  Google Scholar 

  153. L. G. Christophorou, D. L. McCorkle, A. A. Christodoulides, in Electron-Molecule Interactions and Their Applications, 1, Ed. L. G. Christophorou, Academic Press. Inc., London, 1984, pp. 477–617.

  154. A. A. Christodoulides, D. L. McCorkle, L. G. Christophorou, in Electron-Molecule Interactions and Their Applications, 2, Ed. L. G. Christophorou, Academic Press. Inc., London, 1984, pp. 423–641.

  155. L. G. Christophorou, Nukleonika, 2003, 48, 67.

    CAS  Google Scholar 

  156. T. Oster, A. Kühn, E. Illenberger, Inter. J. Mass Spectrom. Ion Proc., 1989, 89, 1; DOI: https://doi.org/10.1016/0168-1176(89)85031-1.

    Article  CAS  Google Scholar 

  157. J. Simons, Annu. Rev. Phys. Chem., 1977, 28, 15; DOI: https://doi.org/10.1146/annurev.pc.28.100177.000311.

    Article  CAS  Google Scholar 

  158. J. Simons, K. D. Jordan, Chem. Rev., 1987, 87, 535; DOI: https://doi.org/10.1021/cr00079a004.

    Article  CAS  Google Scholar 

  159. J. Simons, J. Phys. Chem. A, 2008, 112, 6401; DOI: https://doi.org/10.1021/jp711490b.

    Article  CAS  PubMed  Google Scholar 

  160. J. Simons, Annu. Rev. Phys. Chem., 2011, 62, 107; DOI: https://doi.org/10.1146/annurev-physchem-032210-103547.

    Article  CAS  PubMed  Google Scholar 

  161. Electron Capture Theory and Practice in Chromatography, Eds A. Zlatkis, C. F. Poole, Elsevier, 1981.

  162. J. B. Hasted, D. Mathur, in Electron-Molecule Interactions and Their Applications, 1, Ed. L. G. Christophorou, Academic Press. Inc., London, 1984, pp. 403–475.

  163. A. Chutjian, A. Garscadden, J. M. Wadehra, Phys. Reports, 1996, 264, 393; DOI: https://doi.org/10.1016/0370-1573(95)00022-4.

    Article  CAS  Google Scholar 

  164. H. Hotop, M. W. Ruf, M. Allan, I. I. Fabrikant, in Advances In Atomic, Molecular, and Optical Physics, 49, Eds B. Bederson, H. Walther, Academic Press, 2003, pp. 85–216; DOI: https://doi.org/10.1016/S1049-250X(03)80004-6.

  165. E. C. M. Chen, E. S. Chen, J. Chromatogr. A, 2018, 1573, 1; DOI: https://doi.org/10.1016/j.chroma.2018.08.041.

    Article  CAS  PubMed  Google Scholar 

  166. E. C. M. Chen, E. S. D. Chen, The Electron Capture Detector and the Study of Reactions with Thermal Electrons, John Wiley & Sons, New Jersey, 2004, 399 pp.; DOI: https://doi.org/10.1002/0471659894.

    Book  Google Scholar 

  167. V. A. Mazunov, V. I. Khvostenko, Khimiya vysokikh energii [High Energy Chem.], 1976, 10, 863 (in Russian).

    Google Scholar 

  168. V. A. Mazunov, T. Kh. Yumaguzin, V. I. Khvostenko, Mass-spektrometriya rezonansnogo zakhvata electronov: metod i retrospektivnyj obzor [Resonant Electron Capture Mass Spectrometry: the Method and a Retrospective Survey], Bashkirskiy filial AN SSSR, Ufa, 1987, 219 pp. (in Russian).

    Google Scholar 

  169. R. V. Khatymov, V. Yu. Markov, R. F. Tuktarov, I. N. Ioffe, M. V. Muftakhov, S. M. Avdoshenko, A. V. Pogulay, L. N. Sidorov, Int. J. Mass Spectr., 2008, 272, 119; DOI: https://doi.org/10.1016/j.ijms.2008.01.007.

    Article  CAS  Google Scholar 

  170. V. A. Mazunov, Yu. V. Vasil’ev, M. V. Muftakhov, R. F. Tuktarov, High Energy Chem., 1988, 22, 154.

    Google Scholar 

  171. T. P. Ragesh Kumar, R. Bjornsson, S. Barth, O. Ingólfsson, Chem. Sci., 2017, 8, 5949; DOI: https://doi.org/10.1039/C7SC01927K.

    Article  Google Scholar 

  172. R. F. Tuktarov, R. F. Akhmet’yanov, E. S. Shikhovtseva, Yu. A. Lebedev, V. A. Mazunov, JETP Lett., 2005, 81, 171.

    Article  CAS  Google Scholar 

  173. V. I. Khvostenko, A. S. Vorob’yov, O. G. Khvostenko, J. Phys. B: Atomic, Molecular and Optical Physics, 1990, 23, 1975.

    Article  CAS  Google Scholar 

  174. L. Sanche, G. J. Schulz, J. Chem. Phys., 1973, 58, 479; DOI: https://doi.org/10.1063/1.1679228.

    Article  CAS  Google Scholar 

  175. K. D. Jordan, P. D. Burrow, Chem. Rev., 1987, 87, 557; DOI: https://doi.org/10.1021/cr00079a005.

    Article  CAS  Google Scholar 

  176. S. Trajmar, J. K. Rice, A. Kuppermann, in Advances in Chemical Physics, vol. 18, Eds I. Prigogine, S. A. Rice, Wiley, 1970, pp. 15–90; DOI: https://doi.org/10.1002/9780470143650.ch2.

  177. I. I. Furlei, A. Sh. Sultanov, A. S. Vorob’ev, V. K. Mavrodiev, V. A. Dokichev, U. M. Dzhemilev, G. A. Tolstikov, R. I. Khusnutdinov, Khim. fizika [Sov. J. Chem. Phys.], 1987, 6, 1231 (in Russian).

    CAS  Google Scholar 

  178. A. S. Vorob’ev, I. I. Furlei, A. Sh. Sultanov, V. I. Khvostenko, G. V. Leplyanin, A. R. Derzhinskii, G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 1388; DOI: https://doi.org/10.1007/BF00978424.

    Article  Google Scholar 

  179. Yu. V. Vasil’ev, V. A. Mazunov, JETP Lett., 1990, 51, 144.

    Google Scholar 

  180. Yu. V. Vasil’ev, V. A. Mazunov, Khim. fizika [Sov. J. Chem. Phys.], 1991, 10, 170 (in Russian).

    Google Scholar 

  181. N. L. Asfandiarov, V. S. Fal’ko, A. I. Fokin, G. S. Lomakin, N. M. Pozdeev, O. Yu. Podkopaeva, Yu. V. Chizhov, Rapid Commun. Mass Spectrom., 1998, 12, 595; DOI: https://doi.org/10.1002/(sici)1097-0231(19980529)12:10<595::aid-rcm201>3.0.co;2-y.

    Article  CAS  Google Scholar 

  182. B. C. Ibănescu, M. Allan, Phys. Chem. Chem. Phys., 2008, 10, 5232; DOI: https://doi.org/10.1039/B806578K.

    Article  PubMed  CAS  Google Scholar 

  183. M. Zawadzki, P. Wierzbicka, J. Kopyra, J. Chem. Phys., 2020, 152, 174304; DOI: https://doi.org/10.1063/1.5135383.

    Article  CAS  PubMed  Google Scholar 

  184. S. A. Pshenichnyuk, A. Modelli, E. F. Lazneva, A. S. Komolov, J. Phys. Chem. A, 2014, 118, 6810; DOI: https://doi.org/10.1021/jp505841c.

    Article  CAS  PubMed  Google Scholar 

  185. S. A. Pshenichnyuk, A. Modelli, J. Chem. Phys., 2014, 140, 034313; DOI: https://doi.org/10.1063/1.4861497.

    Article  PubMed  CAS  Google Scholar 

  186. S. A. Pshenichnyuk, A. Modelli, J. Chem. Phys., 2012, 136, 234307; DOI: https://doi.org/10.1063/1.4727854.

    Article  PubMed  CAS  Google Scholar 

  187. S. A. Pshenichnyuk, Yu. N. Elkin, N. I. Kulesh, E. F. Lazneva, A. S. Komolov, Phys. Chem. Chem. Phys., 2015, 17, 16805; DOI: https://doi.org/10.1039/C5CP02890F.

    Article  CAS  PubMed  Google Scholar 

  188. S. A. Pshenichnyuk, I. I. Fabrikant, A. Modelli, S. Ptasinska, A. S. Komolov, Phys. Rev. A, 2019, 100, 012708; DOI: https://doi.org/10.1103/PhysRevA.100.012708.

    Article  CAS  Google Scholar 

  189. N. L. Asfandiarov, M. V. Muftakhov, S. A. Pshenichnyuk, P. Papp, M. Danko, M. Lacko, J. Blaško, Š. Matejčik, A. Modelli, J. Chem. Phys., 2017, 147, 234302; DOI: https://doi.org/10.1063/1.5007816.

    Article  CAS  PubMed  Google Scholar 

  190. N. L. Asfandiarov, A. Modelli, S. A. Pshenichnyuk, R. G. Rakhmeev, M. M. Tayupov, E. E. Tseplin, S. N. Tseplina, J. Chem. Phys., 2019, 151, 134302; DOI: https://doi.org/10.1063/1.5119777.

    Article  CAS  PubMed  Google Scholar 

  191. E. E. Tseplin, S. N. Tseplina, G. M. Tuimedov, O. G. Khvostenko, J. Electron Spectroscopy Relat. Phenomena, 2009, 171, 37; DOI: https://doi.org/10.1016/j.elspec.2009.01.003.

    Article  CAS  Google Scholar 

  192. O. G. Khvostenko, V. G. Lukin, G. M. Tuimedov, L. Z. Khatymova, R. R. Kinzyabulatov, E. E. Tseplin, J. Electron Spectroscopy Relat. Phenomena, 2015, 199, 1; DOI: https://doi.org/10.1016/j.elspec.2014.12.010.

    Article  CAS  Google Scholar 

  193. R. A. Zubarev, N. L. Kelleher, F. W. McLafferty, J. Am. Chem. Soc., 1998, 120, 3265; DOI: https://doi.org/10.1021/ja973478k.

    Article  CAS  Google Scholar 

  194. D. Ponomarev, V. Takhistov, J. Mol. Struct., 2006, 784, 198; DOI: https://doi.org/10.1016/j.molstruc.2005.07.035.

    Article  CAS  Google Scholar 

  195. M. V. Muftakhov, R. V. Khatymov, V. A. Mazunov, Russ. Chem. Bull., 2000, 49, 1489; DOI: https://doi.org/10.1007/BF02495108.

    Article  CAS  Google Scholar 

  196. R. V. Khatymov, M. V. Muftakhov, R. F. Tuktarov, O. A. Raitman, A. V. Shokurov, E. Yu. Pankratyev, J. Chem. Phys., 2019, 150, 134301; DOI: https://doi.org/10.1063/1.5087182.

    Article  PubMed  CAS  Google Scholar 

  197. Negative Ion Energetics Data in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds P. J. Linstrom, W. G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899 (retrieved March 24, 2020); DOI: https://doi.org/10.18434/T4D303.

    Google Scholar 

  198. V. V. Takhistov, Organicheskaya mass-spektrometriya [Organic Mass Spectrometry], Nauka, Leningrad, 1990, 222 pp. (in Russian).

    Google Scholar 

  199. E. Yu. Pankratyev, R. V. Khatymov, Izv. UNTs RAN [Proc. Ufa Scientific Centre of the RAS], 2019, Iss. 2, 26; DOI: https://doi.org/10.31040/2222-8349-2019-0-2-26-37 (in Russian).

  200. E. Yu. Pankratyev, R. V. Khatymov, D. S. Sabirov, A. V. Yuldashev, Physica E, 2018, 101, 265; DOI: https://doi.org/10.1016/j.physe.2018.04.004.

    Article  CAS  Google Scholar 

  201. J. Wu, X. Xu, J. Chem. Phys., 2007, 127, 214105; DOI: https://doi.org/10.1063/1.2800018.

    Article  PubMed  CAS  Google Scholar 

  202. R. F. Tuktarov, R. V. Khatymov, P. V. Shchukin, M. V. Muftakhov, V. Yu. Markov, O. A. Solomeshch, JETP Lett., 2009, 90, 515; DOI: https://doi.org/10.1134/s0021364009190047.

    Article  CAS  Google Scholar 

  203. W. T. Naff, C. D. Cooper, R. N. Compton, J. Chem. Phys., 1968, 49, 2784; DOI: https://doi.org/10.1063/1.1670485.

    Article  CAS  Google Scholar 

  204. Š. Matejčik, T. D. Märk, P. Španěl, D. Smith, T. Jaffke, E. Illenberger, J. Chem. Phys., 1995, 102, 2516; DOI: https://doi.org/10.1063/1.468680.

    Article  Google Scholar 

  205. Yu. V. Vasil’ev, R. R. Absalimov, S. K. Nasibullaev, A. S. Lobach, T. Drewello, J. Phys. Chem. A, 2001, 105, 661; DOI: https://doi.org/10.1021/jp002890a.

    Article  CAS  Google Scholar 

  206. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, E. P. Nafikova, A. Modelli, Rapid Commun. Mass Spectrom., 2015, 29, 910; DOI: https://doi.org/10.1002/rcm.7162.

    Article  CAS  PubMed  Google Scholar 

  207. A. I. Ivanov, O. A. Ponomarev, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1976, 25, 2323; DOI: https://doi.org/10.1007/BF00973387.

    Article  Google Scholar 

  208. O. A. Ponomarev, V. A. Mazunov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 320; DOI: https://doi.org/10.1007/BF00952915.

    Article  Google Scholar 

  209. C. Lifshitz, J. Phys. Chem., 1983, 87, 3474; DOI: https://doi.org/10.1021/j100241a024.

    Article  CAS  Google Scholar 

  210. Yu. V. Vasil’ev, R. R. Abzalimov, S. K. Nasibullaev, T. Drewello, Fuller. Nanotub. Car. Nanostruct., 2005, 12, 229; DOI: https://doi.org/10.1081/fst-120027161.

    Article  CAS  Google Scholar 

  211. H. Deutsch, K. Becker, S. Matt, T. D. Märk, Int. J. Mass Spectrom., 2000, 197, 37; DOI: https://doi.org/10.1016/S1387-3806(99)00257-2.

    Article  CAS  Google Scholar 

  212. L. E. Kline, D. K. Davies, C. L. Chen, P. J. Chantry, J. Appl. Phys., 1979, 50, 6789; DOI: https://doi.org/10.1063/1.325814.

    Article  CAS  Google Scholar 

  213. L. G. Christophorou, J. K. Olthoff, Int. J. Mass Spectrom., 2001, 205, 27; DOI: https://doi.org/10.1016/S1387-3806(00)00280-3.

    Article  CAS  Google Scholar 

  214. N. A. Klyuev, E. S. Brodskiy, Ross. khim. zhurn. [Mendeleev Chem. J.], 2002, 46, Iss. 4, 57 (in Russian).

    CAS  Google Scholar 

  215. Comprehensive Environmental Mass Spectrometry, Ed. A. T. Lebedev, ILM Publications, London, 2012, 510 pp.

    Google Scholar 

  216. E. C. M. Chen, J. R. Wiley, C. F. Batten, W. E. Wentworth, J. Phys. Chem., 1994, 98, 88; DOI: https://doi.org/10.1021/j100052a016.

    Article  CAS  Google Scholar 

  217. J. Kopyra, H. Abdoul-Carime, J. Chem. Phys., 2016, 144, 034306; DOI: https://doi.org/10.1063/1.4940147.

    Article  PubMed  CAS  Google Scholar 

  218. A. Rosa, W. Barszczewska, D. Nandi, V. Ashok, S. V. K. Kumar, E. Krishnakumar, F. Brüning, E. Illenberger, Chem. Phys. Lett., 2001, 342, 536; DOI: https://doi.org/10.1016/S0009-2614(01)00643-1.

    Article  CAS  Google Scholar 

  219. I. Hahndorf, E. Illenberger, Int. J. Mass Spectrom. Ion Processes, 1997, 167-168, 87; DOI: https://doi.org/10.1016/S0168-1176(97)00035-9.

    Article  Google Scholar 

  220. M. V. Muftakhov, R. V. Khatymov, P. V. Shchukin, A. V. Pogulay, V. A. Mazunov, J. Mass Spectrom., 2010, 45, 82; DOI: https://doi.org/10.1002/jms.1693.

    CAS  PubMed  Google Scholar 

  221. P. Rawat, V. S. Prabhudesai, M. A. Rahman, N. B. Ram, E. Krishnakumar, Int. J. Mass Spectrom., 2008, 277, 96; DOI: https://doi.org/10.1016/j.iims.2008.05.015.

    Article  CAS  Google Scholar 

  222. P. Rawat, V. S. Prabhudesai, G. Aravind, M. A. Rahman, E. Krishnakumar, J. Phys. B: Atomic, Molecular and Optical Physics, 2007, 40, 4625; DOI: https://doi.org/10.1088/0953-4075/40/24/007.

    Article  CAS  Google Scholar 

  223. C. E. Melton, J. Chem. Phys., 1972, 57, 4218; DOI: https://doi.org/10.1063/1.1678051.

    Article  CAS  Google Scholar 

  224. D. Klar, M. W. Ruf, H. Hotop, Int. J. Mass Spectrom., 2001, 205, 93; DOI: https://doi.org/10.1016/S1387-3806(00)00271-2.

    Article  CAS  Google Scholar 

  225. D. M. Pearl, P. D. Burrow, I. I. Fabrikant, G. A. Gallup, J. Chem. Phys., 1995, 102, 2737; DOI: https://doi.org/10.1063/1.468650.

    Article  CAS  Google Scholar 

  226. A. Pelc, P. Scheier, T. D. Märk, Vacuum, 2007, 81, 1180; DOI: https://doi.org/10.1016/j.vacuum.2007.01.011.

    Article  CAS  Google Scholar 

  227. V. S. Prabhudesai, D. Nandi, A. H. Kelkar, R. Parajuli, E. Krishnakumar, Chem. Phys. Lett., 2005, 405, 172; DOI: https://doi.org/10.1016/j.cplett.2005.01.128.

    Article  CAS  Google Scholar 

  228. W. Sailer, A. Pelc, M. Probst, J. Limtrakul, P. Scheier, E. Illenberger, T. D. Märk, Chem. Phys. Lett., 2003, 378, 250; DOI: https://doi.org/10.1016/S0009-2614(03)01285-5.

    Article  CAS  Google Scholar 

  229. G. Hanel, B. Gstir, S. Denifl, P. Scheier, M. Probst, B. Farizon, M. Farizon, E. Illenberger, T. D. Märk, Phys. Rev. Lett., 2003, 90, 188104; DOI: https://doi.org/10.1103/PhysRevLett.90.188104.

    Article  CAS  PubMed  Google Scholar 

  230. M. V. Muftakhov, P. V. Shchukin, J. Anal. Chem., 2013, 68, 1200; DOI: https://doi.org/10.1134/S1061934813140086].

    Article  CAS  Google Scholar 

  231. M. V. Muftakhov, P. V. Shchukin, R. V. Khatymov, Russ. J. Phys. Chem. A, 2017, 91, 1730; DOI: https://doi.org/10.1134/s0036024417090229.

    Article  CAS  Google Scholar 

  232. S. Tobita, M. Meinke, E. Illenberger, L. G. Christophorou, H. Baumgärtel, S. Leach, Chem. Phys., 1992, 161, 501; DOI: https://doi.org/10.1016/0301-0104(92)80165-R.

    Article  CAS  Google Scholar 

  233. V. Kasperovich, G. Tikhonov, V. V. Kresin, Chem. Phys. Lett., 2001, 337, 55; DOI: https://doi.org/10.1016/S0009-2614(01)00199-3.

    Article  CAS  Google Scholar 

  234. Yu. V. Vasil’ev, V. G. Voinov, D. F. Barofsky, M. L. Deinzer, Int. J. Mass Spectrom., 2008, 277, 142; DOI: https://doi.org/10.1016/j.ijms.2008.07.008.

    Article  CAS  Google Scholar 

  235. M. V. Muftakhov, P. V. Shchukin, R. V. Khatymov, R. F. Tuktarov, Russ. Chem. Bull., 2016, 65, 658; DOI: https://doi.org/10.1007/s11172-016-1352-9.

    Article  CAS  Google Scholar 

  236. C. Dass, in Fundamentals of Contemporary Mass Spectrometry, John Wiley and Sons Inc., 2007, pp. 195–261; DOI: https://doi.org/10.1002/9780470118498.ch6.

  237. V. I. Khvostenko, I. I. Furlei, V. S. Fal’ko, L. A. Baltina, G. A. Tolstikov, A. Sh. Sultanov, Khimiya vysokikh energii [High Energy Chem.], 1977, 11, 15 (in Russian).

    CAS  Google Scholar 

  238. Yu. V. Vasil’ev, B. J. Figard, V. G. Voinov, D. F. Barofsky, M. L. Deinzer, J. Am. Chem. Soc., 2006, 128, 5506; DOI: https://doi.org/10.1021/ja058464q.

    Article  PubMed  CAS  Google Scholar 

  239. H. Budzikiewicz, Angew. Chem., Int. Ed. Engl., 1981, 20, 624; DOI: https://doi.org/10.1002/anie.198106241.

    Article  Google Scholar 

  240. J. M. Curtis, R. K. Boyd, Int. J. Mass Spectrom. Ion Processes, 1997, 165-166, 625; DOI: https://doi.org/10.1016/S0168-1176(97)00180-8.

    Article  Google Scholar 

  241. R. L. Flurry, Jr., Symmetry Groups Theory and Chemical Applications, Prentice-Hall Inc., New Jersey, 1980, 356 pp.

    Google Scholar 

  242. I. Hargittai, M. Hargittai, Symmetry through the Eyes of a Chemist, VCH Publishers, New York, 1987.

    Google Scholar 

  243. G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand, 1966, 745 pp.

  244. V. I. Khvostenko, I. I. Furlei, I. Kh. Aminev, Theor. Exp. Chem., 1975, 9, 75.

    Article  Google Scholar 

  245. V. I. Khvostenko, O. G. Khvostenko, G. S. Lomakin, B. G. Zykov, N. L. Asfandiarov, V. A. Mazunov, S. A. Andronati, A. S. Yavorskii, L. N. Yakubovskaya, T. N. Voronina, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 1175; DOI: https://doi.org/10.1007/BF00956656.

    Article  Google Scholar 

  246. I. I. Furlei, V. S. Shmakov, A. G. Tolstikov, Dokl. Akad. Nauk SSSR [Dokl. Chem.], 1989, 309, 147 (in Russian).

    CAS  Google Scholar 

  247. E. A. Burmistrov, I. I. Furlei, A. Sh. Sultanov, G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1990, 39, 930; DOI: https://doi.org/10.1007/BF00961685.

    Article  Google Scholar 

  248. D. D. Clarke, C. A. Coulson, J. Chem. Soc. A, 1969, 169; DOI: https://doi.org/10.1039/J19690000169.

  249. J. Milhaud, Chem. Phys. Lett., 1985, 118, 167; DOI: https://doi.org/10.1016/0009-2614(85)85291-X.

    Article  CAS  Google Scholar 

  250. R. Dressler, M. Allan, E. Haselbach, Chimia, 1985, 39, 385.

    CAS  Google Scholar 

  251. P. K. Freeman, R. Srinivasa, J. A. Campbell, M. L. Deinzer, J. Am. Chem. Soc., 1986, 108, 5531; DOI: https://doi.org/10.1021/ja00278a027.

    Article  CAS  Google Scholar 

  252. N. L. Asfandiarov, V. S. Fal’ko, A. I. Fokin, O. G. Khvostenko, G. S. Lomakin, V. G. Lukin, E. P. Nafikova, Rapid Commun. Mass Spectrom., 2000, 14, 274; DOI: https://doi.org/10.1002/(sici)1097-0231(20000229)14:4<274::aid-rcm878>3.0.co;2-m.

    Article  CAS  PubMed  Google Scholar 

  253. N. L. Asfandiarov, V. S. Fal’ko, V. G. Lukin, E. P. Nafikova, S. A. Pshenichnyuk, A. I. Fokin, G. S. Lomakin, Yu. V. Chizhov, Rapid Commun. Mass Spectrom., 2001, 15, 1869; DOI: https://doi.org/10.1002/rcm.446.

    Article  CAS  PubMed  Google Scholar 

  254. A. Modelli, M. Venuti, J. Phys. Chem. A, 2001, 105, 5836; DOI: https://doi.org/10.1021/jp010430r.

    Article  CAS  Google Scholar 

  255. T. Skalický, C. Chollet, N. Pasquier, M. Allan, Phys. Chem. Chem. Phys., 2002, 4, 3583; DOI: https://doi.org/10.1039/B202494B.

    Article  CAS  Google Scholar 

  256. A. Modelli, Phys. Chem. Chem. Phys., 2003, 5, 2923; DOI: https://doi.org/10.1039/B304083F.

    Article  CAS  Google Scholar 

  257. Yu. V. Vasil’ev, M. V. Muftakhov, G. M. Tuimedov, R. V. Khatymov, R. R. Abzalimov, V. A. Mazunov, T. Drewello, Int. J. Mass Spectrom., 2001, 205, 119; DOI: https://doi.org/10.1016/S1387-3806(00)00289-X.

    Article  Google Scholar 

  258. P. V. Shchukin, G. P. Mikhailov, M. V. Muftakhov, Int. J. Mass Spectrom., 2015, 380, 1; DOI: https://doi.org/10.1016/j.ijms.2015.02.002.

    Article  CAS  Google Scholar 

  259. R. V. Khatymov, M. V. Muftakhov, V. A. Mazunov, D. V. Nedopekin, I. V. Galyautdinov, V. N. Odinokov, Russ. Chem. Bull., 2002, 51, 306; DOI: https://doi.org/10.1023/a:1015411928216.

    Article  CAS  Google Scholar 

  260. M. V. Muftakhov, P. V. Shchukin, R. V. Khatymov, Russ. Chem. Bull., 2006, 55, 380; DOI: https://doi.org/10.1007/s11172-006-0264-5.

    Article  CAS  Google Scholar 

  261. M. V. Muftakhov, R. V. Khatymov, R. F. Tuktarov, Techn. Phys., 2018, 63, 1854; DOI: https://doi.org/10.1134/S1063784218120125.

    Article  CAS  Google Scholar 

  262. I. I. Furlei, A. Sh. Sultanov, E. A. Burmistrov, G. G. Furin, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 2583; DOI: https://doi.org/10.1007/BF00952651.

    Article  Google Scholar 

  263. M. V. Muftakhov, V. A. Mazunov, V. V. Takhistov, Russ. Chem. Bull., 1994, 43, 988; DOI: https://doi.org/10.1007/bf01558063.

    Article  Google Scholar 

  264. V. G. Lukin, O. G. Khvostenko, G. M. Tuimedov, Techn. Phys., 2017, 62, 998; DOI: https://doi.org/10.1134/S1063784217070118.

    Article  CAS  Google Scholar 

  265. V. G. Lukin, G. S. Lomakin, Instrum. Experim. Techniq., 2010, 53, 401; DOI: https://doi.org/10.1134/S0020441210030139.

    Article  CAS  Google Scholar 

  266. V. I. Khvostenko, I. I. Furlei, V. A. Mazunov, S. R. Rafikov, Dokl. AN SSSR [Dokl. Chem.], 1973, 213, 1364 (in Russian).

    CAS  Google Scholar 

  267. T. Onak, J. Howard, C. Brown, J. Chem. Soc., Dalton Trans., 1973, 76; DOI: https://doi.org/10.1039/DT9730000076.

  268. H. Yamaoka, T. Shiga, K. Hayashi, S. Okamura, T. Sugiura, J. Polym. Sci., Part B, 1967, 5, 329; DOI: https://doi.org/10.1002/pol.1967.110050411.

    Article  CAS  Google Scholar 

  269. V. A. Mazunov, V. I. Khvostenko, Pribory i tekhnika eksperim. [Instrum. Experim. Techniq.], 1969, 4, 224 (in Russian).

    Google Scholar 

  270. J. Yinon, H. G. Boettger, Int. J. Mass Spectrom. Ion Phys., 1972, 10, 161; DOI: https://doi.org/10.1016/0020-7381(72)83006-7.

    Article  CAS  Google Scholar 

  271. V. I. Khvostenko, V. A. Mazunov, V. S. Fal’ko, O. G. Khvostenko, V. Sh. Chanbarisov, Khim. Fizika [J. Adv. Chem. Phys.], 1982, 1, 915 (in Russian).

    Google Scholar 

  272. V. G. Lukin, V. S. Fal’ko, D. E. Vyazovkin, Avtometriya [Optoelectronics, Instrumentation, and Data Processing], 1992, Iss. 1, 111 (in Russian).

  273. A. S. Erastov, I. S. Nazarov, M. F. Abdullin, Izv. UNTs RAN [Proc. Ufa Scientific Centre of the RAS], 2020, Iss. 1, 85; DOI: https://doi.org/10.31040/2222-8349-2020-0-1-85-88 (in Russian).

  274. M. V. Muftakhov, Y. V. Vasil’ev, E. R. Nazirov, V. A. Mazunov, Instrum. Experim. Techniq., 1989, 32, 443.

    Google Scholar 

  275. S. Gohlke, A. Rosa, E. Illenberger, F. Brüning, M. A. Huels, J. Chem. Phys., 2002, 116, 10164; DOI: https://doi.org/10.1063/1.1479348.

    Article  CAS  Google Scholar 

  276. V. G. Zaikin, K. V. Tretyakov, Istoriya mass-spektrometrii v datakh [The History of Mass Spectrometry in Dates], Russian Society for Mass Spectrometry, Moscow, 2018, 200 pp. (in Russian).

    Google Scholar 

  277. V. G. Zaikin, A. A. Sysoev, Eur. J. Mass Spectrom., 2013, 19, 399; DOI: https://doi.org/10.1255/ejms.1248.

    Article  CAS  Google Scholar 

  278. Yu. A. Zolotov, Russian Contributions to Analytical Chemistry, Springer, Cham, 2018, 162 pp.; DOI: https://doi.org/10.1007/978-3-319-98791-0.

    Book  Google Scholar 

  279. L. Z. Khatymova, R. V. Khatymov, V. A. Mazunov, Tezisy dokl. XXIII Vseross. Simpoziuma “Sovremennaya khimiches-kayafizika” [Abstrs XXIII All-Russia Symp. “Modern Chemical Physics”] (September 23–October 04, 2011, Tuapse, Russia), Park-Media, Moscow, 2011, pp. 278–279 (in Russian).

  280. L. Z. Khatymova, V. A. Mazunov, R. V. Khatymov, Istoriya nauki i tekhniki [History of Science and Technology], 2008, 3(Suppl. 1), 56 (in Russian).

    Google Scholar 

  281. L. Z. Khatymova, R. V. Khatymov, V. A. Mazunov, Mater. XI Mezhdunar. nauchn. konf. “Sovremennye problemy istorii estestvoznaniya v oblasti khimii, khimicheskoy tekhnologii i neftyanogo dela” [Proc. XI Int. Conf. “Modern Problems in History of Natural Science, as Applied to Chemistry, Chemical Technology, and Petroleum Science”], Reaktiv, Ufa, 2010, pp. 227–231 (in Russian).

    Google Scholar 

  282. R. V. Khatymov, L. Z. Khatymova, V. A. Mazunov, Istoriya nauki i tekhniki [History of Science and Technology], 2012, Iss. 5, 8 (in Russian).

  283. L. Z. Khatymova, V. A. Mazunov, Mater. V Mezhdunarodnoy nauchn. konf. “Sovremennye problemy istorii estestvoznaniya v oblasti khimii, khimicheskoy tekhnologii i neftyanogo dela” [Proc. V Int. Conf. “Modern Problems in History of Natural Science, as Applied to Chemistry, Chemical Technology, and Petroleum Science”]. Vol. 1, Reaktiv, Ufa, 2004, pp. 144–145 (in Russian).

    Google Scholar 

  284. E. J. Reiner, in Dioxin and Related Compounds: Special Volume in Honor of Otto Hutzinger, Ed. M. Alaee, Springer Intern. Publish., Cham, 2016, pp. 51–94; DOI: https://doi.org/10.1007/698_2016_456.

  285. A. V. Pogulay, R. R. Abzalimov, S. K. Nasibullaev, A. S. Lobach, T. Drewello, Y. V. Vasil’ev, Int. J. Mass Spectrom., 2004, 233, 165; DOI: https://doi.org/10.1016/j.ijms.2003.12.016.

    Article  CAS  Google Scholar 

  286. V. A. Mazunov, Yu. V. Vasil’ev, M. V. Muftakhov, Instrum. Experim. Techn., 1991, 34, 378.

    Google Scholar 

  287. R. F. Tuktarov, M. V. Muftakhov, Yu. V. Vasil’ev, Yu. F. Baranov, Deposited at and available from VINITI 15.09.86, No. 7184–86, 1986, 1 (in Russian).

  288. K. L. Stricklett, P. D. Burrow, J. Phys. B, 1986, 19, 4241; DOI: https://doi.org/10.1088/0022-3700/19/24/024.

    Article  CAS  Google Scholar 

  289. V. A. Mazunov, Yu. V. Vasilev, M. V. Muftakhov, V. I. Khvostenko, J. Anal. Chem. USSR, 1989, 44, 1571.

    Google Scholar 

  290. A. Modelli, M. Venuti, Int. J. Mass Spectrom., 2001, 205, 7; DOI: https://doi.org/10.1016/S1387-3806(00)00279-7.

    Article  Google Scholar 

  291. S. A. Pshenichnyuk, A. V. Kukhto, I. N. Kukhto, N. L. Asfandiarov, Russ. J. Phys. Chem. B, 2010, 4, 1014; DOI: https://doi.org/10.1134/S1990793110060205.

    Article  Google Scholar 

  292. R. V. Khatymov, R. F. Tuktarov, M. V. Muftakhov, JETP Lett., 2011, 93, 437; DOI: https://doi.org/10.1134/s002136401108011x.

    Article  CAS  Google Scholar 

  293. I. K. Aminev, V. I. Khvostenko, V. P. Yur’ev, G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1973, 22, 1831; DOI: https://doi.org/10.1007/BF00932128.

    Article  Google Scholar 

  294. Yu. V. Vasil’ev, R. F. Tuktarov, V. A. Mazunov, Rapid Commun. Mass Spectrom., 1997, 11, 757; DOI: https://doi.org/10.1002/(sici)1097-0231(19970422)11:7<757::aid-rcm858>3.0.co;2-4.

    Article  Google Scholar 

  295. T. Jaffke, E. Illenberger, M. Lezius, S. Matejcik, D. Smith, T. D. Märk, Chem. Phys. Lett., 1994, 226, 213; DOI: https://doi.org/10.1016/0009-2614(94)00704-7.

    Article  CAS  Google Scholar 

  296. O. Elhamidi, J. Pommier, R. Abouaf, J. Phys. B, 1997, 30, 4633; DOI: https://doi.org/10.1088/0953-4075/30/20/023.

    Article  CAS  Google Scholar 

  297. V. S. Prabhudesai, D. Nandi, E. Krishnakumar, Eur. Phys. J. D, 2005, 35, 261; DOI: https://doi.org/10.1140/epjd/e2005-00207-5.

    Article  CAS  Google Scholar 

  298. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, E. P. Nafikova, Yu. N. Elkin, D. N. Pelageev, E. A. Koltsova, A. Modelli, Rapid Commun. Mass Spectrom., 2014, 28, 1580; DOI: https://doi.org/10.1002/rcm.6934.

    Article  CAS  PubMed  Google Scholar 

  299. N. L. Asfandiarov, S. A. Pshenichnyuk, R. G. Rakhmeyev, R. F. Tuktarov, N. L. Zaitsev, A. S. Vorob’ev, J. Kočišek, J. Fedor, A. Modelli, J. Chem. Phys., 2019, 150, 114304; DOI: https://doi.org/10.1063/1.5082611.

    Article  CAS  PubMed  Google Scholar 

  300. N. L. Asfandiarov, S. A. Pshenichnyuk, A. I. Fokin, E. P. Nafikova, Chem. Phys., 2004, 298, 263; DOI: https://doi.org/10.1016/j.chemphys.2003.12.003.

    Article  CAS  Google Scholar 

  301. J. F. J. Todd, Pure Appl. Chem., 1991, 63, 1541; DOI: https://doi.org/10.1351/pac199163101541.

    Article  CAS  Google Scholar 

  302. K. K. Murray, R. K. Boyd, M. N. Eberlin, G. J. Langley, L. Li, Y. Naito, Pure Appl. Chem., 2013, 85, 1515; DOI: https://doi.org/10.1351/PAC-REC-06-04-06.

    Article  CAS  Google Scholar 

  303. A. Modelli, A. Foffani, F. Scagnolari, D. Jones, Chem. Phys. Lett., 1989, 163, 269; DOI: https://doi.org/10.1016/0009-2614(89)80048-X.

    Article  CAS  Google Scholar 

  304. S. Matejcik, A. Kiendler, A. Stamatovic, T. D. Märk, Int. J. Mass Spectrom. Ion Processes, 1995, 149-150, 311; DOI: https://doi.org/10.1016/0168-1176(95)04265-M.

    Article  Google Scholar 

  305. E. Krishnakumar, K. Nagesha, Rapid Commun. Mass Spectrom., 1995, 9, 336; DOI: https://doi.org/10.1002/rcm.1290090415.

    Article  CAS  Google Scholar 

  306. N. Mirsaleh-Kohan, W. D. Robertson, R. N. Compton, Mass Spectrom. Rev., 2008, 27, 237; DOI: https://doi.org/10.1002/mas.20162.

    Article  CAS  PubMed  Google Scholar 

  307. S. N. Correa, M. Jesus, N. Mina, M. E. Castro, A. Blanco, S. P. Hernandez-Rivera, R. B. Cody, J. A. Laramee, in Proc. SPIE 5089 “Detection and Remediation Technologies for Mines and Minelike Targets VIII” (AeroSence, 11 September 2003). Society of Photo-Optical Instrumentation Engineers, Orlando, Florida, United States, 2003 pp. 1001–1011.

    Google Scholar 

  308. J. Wei, S. Liu, S. A. Fedoreyev, V. G. Voinov, Rapid Commun. Mass Spectrom., 2000, 14, 1689; DOI: https://doi.org/10.1002/1097-0231(20000930)14:18<1689::aid-rcm75>3.0.co;2-g.

    Article  CAS  PubMed  Google Scholar 

  309. V. G. Voinov, M. Claeys, Int. J. Mass Spectrom., 2000, 198, 23; DOI: https://doi.org/10.1016/S1387-3806(99)00267-5.

    Article  CAS  Google Scholar 

  310. V. G. Voinov, H. Van den Heuvel, M. Claeys, J. Mass Spectrom., 2002, 37, 313; DOI: https://doi.org/10.1002/jms.285.

    Article  CAS  PubMed  Google Scholar 

  311. Yu. V. Vasil’ev, O. V. Boltalina, R. F. Tuktarov, V. A. Mazunov, L. N. Sidorov, Int. J. Mass Spectrom. Ion Processes, 1998, 173, 113; DOI: https://doi.org/10.1016/S0168-1176(97)00279-6.

    Article  Google Scholar 

  312. P. Sulzer, A. Mauracher, S. Denifl, M. Probst, T. D. Märk, P. Scheier, E. Illenberger, Int. J. Mass Spectrom., 2007, 266, 138; DOI: https://doi.org/10.1016/j.jms.2007.07.018.

    Article  CAS  Google Scholar 

  313. A. D. Polukarov, A. M. Goremykin, Yu. N. Elkin, V. G. Voinov, B. K. Vasilev, Instrum. Experim. Techniq., 1988, 31, 424.

    Google Scholar 

  314. Yu. N. Elkin, V. G. Voinov, M. V. Vysotskiy, V. I. Svetashev, Bioorgan. khimiya, Sov. J. Bioorgan. Chem., 1985, 11, 674 (in Russian).

    CAS  Google Scholar 

  315. A. G. Terentyev, R. V. Khatymov, A. V. Mal’tsev, Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory. Diagnostics of Materials], 2020, 86, 12; DOI: https://doi.org/10.26896/1028-6861-2020-86-4-12-20 (in Russian).

    Google Scholar 

  316. Patent RU 188483, Byul. Izobret. [Invention Bull.], 2019, 11 (in Russian).

  317. A. S. Samokhin, I. A. Revelsky, J. Anal. Chem., 2012, 67, 1066; DOI: https://doi.org/10.1134/S1061934812140080.

    Article  CAS  Google Scholar 

  318. L. G. Christophorou, J. G. Carter, A. A. Christodoulides, Chem. Phys. Lett., 1969, 3, 237; DOI: https://doi.org/10.1016/0009-2614(69)80037-0.

    Article  CAS  Google Scholar 

  319. J. Kočišek, R. Janečková, J. Fedor, J. Chem. Phys., 2018, 148, 074303; DOI: https://doi.org/10.1063/1.5017478.

    Article  PubMed  CAS  Google Scholar 

  320. O. Ingólfsson, Low-Energy Electrons: Fundamentals and Applications, Pan Standford Publishing Pte. Ltd, Singapore, 2019, 418 pp.

    Book  Google Scholar 

  321. O. G. Khvostenko, V. G. Lukin, E. E. Tseplin, Rapid Commun. Mass Spectrom., 2012, 26, 2535; DOI: https://doi.org/10.1002/rcm.6372.

    Article  CAS  PubMed  Google Scholar 

  322. O. G. Khvostenko, P. V. Shchukin, G. M. Tuimedov, M. V. Muftakhov, E. E. Tseplin, S. N. Tseplina, V. A. Mazunov, Int. J. Mass Spectrom., 2008, 273, 69; DOI: https://doi.org/10.1016/j.ijms.2008.03.001.

    Article  CAS  Google Scholar 

  323. S. A. Pshenichnyuk, G. S. Lomakin, A. I. Fokin, I. A. Pshenichnyuk, N. L. Asfandiarov, Rapid Commun. Mass Spectrom., 2006, 20, 383; DOI: doi: https://doi.org/10.1002/rcm.2274.

    Article  CAS  PubMed  Google Scholar 

  324. O. G. Khvostenko, L. Z. Khatymova, V. G. Lukin, R. R. Kinzyabulatov, G. M. Tuimedov, E. E. Tseplin, S. N. Tseplina, Chem. Phys. Lett., 2018, 711, 81; DOI: https://doi.org/10.1016/j.cplett.2018.09.032.

    Article  CAS  Google Scholar 

  325. C. D. Cooper, W. T. Naff, R. N. Compton, J. Chem. Phys., 1975, 63, 2752; DOI: https://doi.org/10.1063/1.431627.

    Article  CAS  Google Scholar 

  326. R. N. Compton, C. D. Cooper, J. Chem. Phys., 1977, 66, 4325; DOI: https://doi.org/10.1063/1.433743.

    Article  CAS  Google Scholar 

  327. N. L. Asfandiarov, S. A. Pshenichnyuk, E. P. Nafikova, A. S. Vorob’ev, Yu. N. Elkin, A. Modelli, A. S. Komolov, Int. J. Mass Spectrom., 2017, 412, 26; DOI: https://doi.org/10.1016/j.ijms.2016.12.010.

    Article  CAS  Google Scholar 

  328. N. L. Asfandiarov, A. I. Fokin, V. G. Lukin, E. P. Nafikova, G. S. Lomakin, V. S. Fal’ko, Yu. V. Chizhov, Rapid Commun. Mass Spectrom., 1999, 13, 1116; DOI: https://doi.org/10.1002/(sici)1097-0231(19990630)13:12<1116::aid-rcm623>3.0.co;2-m.

    Article  CAS  PubMed  Google Scholar 

  329. A. Modelli, P. D. Burrow, Phys. Chem. Chem. Phys., 2009, 11, 8448; DOI: https://doi.org/10.1039/B908770B.

    Article  CAS  PubMed  Google Scholar 

  330. A. S. Vorob’ev, S. A. Pshenichnyuk, N. L. Asfandiarov, E. P. Nafikova, Techn. Phys., 2014, 59, 1277; DOI: https://doi.org/10.1134/S1063784214090084.

    Article  CAS  Google Scholar 

  331. O. G. Khvostenko, G. M. Tuimedov, Rapid Commun. Mass Spectrom., 2006, 20, 3699; DOI: https://doi.org/10.1002/rcm.2792.

    Article  CAS  PubMed  Google Scholar 

  332. O. G. Khvostenko, G. M. Tuimedov, U. M. Dzhemilev, Dokl. Phys. Chem., 2007, 414, 162; DOI: https://doi.org/10.1134/S0012501607060115.

    Article  CAS  Google Scholar 

  333. S. A. Pshenichnyuk, A. S. Vorob’ev, A. Modelli, J. Chem. Phys., 2011, 135, 184301; DOI: https://doi.org/10.1063/1.3658372.

    Article  PubMed  CAS  Google Scholar 

  334. Y. V. Vasil’ev, V. A. Mazunov, E. R. Nazirov, Org. Mass Spectrom., 1991, 26, 739; DOI: https://doi.org/10.1002/oms.1210260904.

    Article  Google Scholar 

  335. V. I. Khvostenko, O. G. Khvostenko, B. G. Zykov, V. A. Mazunov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1977, 26, 655; DOI: https://doi.org/10.1007/BF01179499.

    Article  Google Scholar 

  336. M. Lezius, P. Scheier, T. D. Märk, Chem. Phys. Lett., 1993, 203, 232; DOI: https://doi.org/10.1016/0009-2614(93)85393-3.

    Article  CAS  Google Scholar 

  337. S. Ptasinska, O. Echt, S. Denifl, M. Stano, P. Sulzer, F. Zappa, A. Stamatovic, P. Scheier, T. D. Märk, J. Phys. Chem. A, 2006, 110, 8451; DOI: https://doi.org/10.1021/jp060324v.

    Article  CAS  PubMed  Google Scholar 

  338. R. F. Akhmetyanov, R. F. Tuktarov, E. S. Shikhovtseva, in Struktura i dinamika molekulyarnykh sistem [The Structure and Dynamics of Molecular Systems], Iss. 13, Pt. 2, Eds E. S. Shikhovtseva, R. V. Khatymov, M. V. Khazimullin, T. V. Smotrina, A. V. Pogulyay, V. N. Nazarov, Institute of Molecule and Crystal Physics, Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2006, pp. 35–38 (in Russian).

  339. O. Elhamidi, J. Pommier, R. Abouaf, Int. J. Mass Spectrom., 2001, 205, 17; DOI: https://doi.org/10.1016/S1387-3806(00)00275-X.

    Article  CAS  Google Scholar 

  340. G. A. Gallup, K. Aflatooni, P. D. Burrow, J. Chem. Phys., 2003, 118, 2562; DOI: https://doi.org/10.1063/1.1535891.

    Article  CAS  Google Scholar 

  341. A. A. Goryunkov, N. L. Asfandiarov, M. V. Muftakhov, I. N. Ioffe, V. A. Solovyeva, N. S. Lukonina, V. Yu. Markov, R. G. Rakhmeyev, S. A. Pshenichnyuk, J. Phys. Chem. A, 2020, 124, 690; DOI: https://doi.org/10.1021/acs.jpca.9b11088.

    Article  CAS  PubMed  Google Scholar 

  342. H. Abdoul-Carime, P. Limão-Vieira, S. Gohlke, I. Petrushko, N. J. Mason, E. Illenberger, Chem. Phys. Lett., 2004, 393, 442; DOI: https://doi.org/10.1016/j.cplett.2004.06.081.

    Article  CAS  Google Scholar 

  343. P. Sulzer, S. Ptasinska, F. Zappa, B. Mielewska, A. R. Milosavljevic, P. Scheier, T. D. Märk, I. Bald, S. Gohlke, M. A. Huels, E. Illenberger, J. Chem. Phys., 2006, 125, 044304; DOI: https://doi.org/10.1063/1.2222370.

    Article  CAS  Google Scholar 

  344. S. A. Pshenichnyuk, A. Modelli, Int. J. Mass Spectrom., 2010, 294, 93; DOI: https://doi.org/10.1016/j.ijms.2010.05.025.

    Article  CAS  Google Scholar 

  345. M. Allan, M. Lacko, P. Papp, S. Matejcik, M. Zlatar, I. I. Fabrikant, J. Kočišek, J. Fedor, Phys. Chem. Chem. Phys., 2018, 20, 11692; DOI: https://doi.org/10.1039/C8CP01387J.

    Article  CAS  PubMed  Google Scholar 

  346. P. V. Shchukin, M. V. Muftakhov, R. V. Khatymov, Issledovano v Rossii (elektron. zhurn.) [Investigated in Russia (electronic journal)], 2005, 8, 1672 (in Russian).

    Google Scholar 

  347. S. A. Pshenichnyuk, A. Modelli, N. L. Asfandiarov, R. G. Rakhmeyev, M. M. Tayupov, A. S. Komolov, Phys. Rev. Res., 2020, 2, 012030; DOI: https://doi.org/10.1103/PhysRevResearch.2.012030.

    Article  CAS  Google Scholar 

  348. V. I. Khvostenko, I. I. Furlei, V. A. Mazunov, R. G. Kostyanovskii, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1973, 22, 659.

    Article  Google Scholar 

  349. V. A. Mazunov, Yu. S. Nekrasov, V. I. Khvostenko, V. I. Stanko, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1983, 32, 197; DOI: https://doi.org/10.1007/BF01167795.

    Article  Google Scholar 

  350. NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral Library. Version 2.2, 2014.

  351. D. V. Mavrodiev, M. F. Abdullin, D. A. Sayniev, I. M. Sakhautdinov, L. V. Khalilova, V. K. Mavrodiev, I. I. Furlei, Khimiya vysokikh energii [High Energy Chem.], 2013, 47, 83; DOI: https://doi.org/10.7868/S0023119713020087 (in Russian).

    Google Scholar 

  352. S. V. Pikhtovnikov, E. M. Vyrypaev, V. K. Mavrodiev, I. I. Furlei, R. R. Gataullin, I. B. Abdrakhmanov, Mass-spektrometriya [Mass Spectrometry], 2004, 1, 143 (in Russian).

    CAS  Google Scholar 

  353. D. V. Mavrodiev, M. F. Abdullin, D. A. Sainiev, E. P. Nafikova, E. M. Tsyrlina, V. K. Mavrodiev, I. I. Furlei, M. S. Yunusov, High Energy Chem., 2012, 46, 73; DOI: https://doi.org/10.1134/S0018143912020063.

    Article  CAS  Google Scholar 

  354. H.-P. Fenzlaff, E. Illenberger, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 185; DOI: https://doi.org/10.1016/0168-1176(84)85094-6.

    Article  CAS  Google Scholar 

  355. S. A. Pshenichnyuk, I. A. Pshenichnyuk, E. P. Nafikova, N. L. Asfandiarov, Rapid Commun. Mass Spectrom., 2006, 20, 1097; DOI: https://doi.org/10.1002/rcm.2410.

    Article  CAS  PubMed  Google Scholar 

  356. N. L. Asfandiarov, S. A. Pshenichnyuk, V. G. Lukin, A. S. Vorob’ev, A. I. Fokin, Int. J. Mass Spectrom., 2008, 277, 62; DOI: https://doi.org/10.1016/j.iims.2008.08.008.

    Article  CAS  Google Scholar 

  357. S. A. Pshenichnyuk, A. Modelli, D. Jones, E. F. Lazneva, A. S. Komolov, J. Phys. Chem. B, 2017, 121, 3965; DOI: https://doi.org/10.1021/acs.jpcb.7b01408.

    Article  CAS  PubMed  Google Scholar 

  358. E. S. Chernetsova, A. I. Revelsky, I. A. Revelsky, I. A. Mikhasenko, T. G. Sobolevsky, Mass Spectrom. Rev., 2002, 21, 373; DOI: https://doi.org/10.1002/mas.10037.

    Article  CAS  PubMed  Google Scholar 

  359. Yu. A. Borisov, B. C. Garrett, V. A. Mazunov, Yu. S. Nekrasov, Russ. J. Struct. Chem., 2005, 46, 591; DOI: https://doi.org/10.1007/s10947-006-0175-1.

    Article  CAS  Google Scholar 

  360. V. D. Berkout, P. Mazurkiewicz, M. L. Deinzer, J. Am. Chem. Soc., 1999, 121, 2561; DOI: https://doi.org/10.1021/ja981639u.

    Article  CAS  Google Scholar 

  361. M. I. Tokarev, Candidate of Science (Chem.) Thesis, VNIINP, Moscow, 1985, 164 pp. (in Russian).

    Google Scholar 

  362. U. B. Imashev, O. G. Khvostenko, V. G. Lukin, V. G. Shereshovets, V. A. Mazunov, J. Anal. Chem., 1998, 53, 578.

    CAS  Google Scholar 

  363. V. S. Shmakov, A. D. Ulendeeva, N. K. Lyapina, I. I. Furlei, Neftekhimiya [Petroleum Chem. USSR], 1989, 29, 14 (in Russian).

    CAS  Google Scholar 

  364. N. L. Asfandiarov, S. A. Pshenichnyuk, V. S. Fal’ko, J. Wnorowska, K. Wnorowski, I. Szamrej-Forys, Nukleonika, 2003, 48, 83.

    CAS  Google Scholar 

  365. W. Barszczewska, J. Kopyra, J. Wnorowska, M. Forys, I. Szamrej, N. L. Asfandiarov, S. A. Pshenichnyuk, V. S. Fal’ko, Radiat. Phys. Chem., 2007, 76, 1017; DOI: https://doi.org/10.1016/j.radphyschem.2006.10.003.

    Article  CAS  Google Scholar 

  366. S. A. Pshenichnyuk, A. Modelli, A. S. Vorob’ev, N. L. Asfandiarov, E. P. Nafikova, R. G. Rakhmeyev, R. V. Galeev, A. S. Komolov, Phys. Chem. Chem. Phys., 2018, 20, 22272; DOI: https://doi.org/10.1039/C8CP03224F.

    Article  CAS  PubMed  Google Scholar 

  367. Patent RU 158407, Byul. Izobret. [Invention Bull.], 2015, No. 36 (in Russian).

  368. J. T. Watson, O. D. Sparkman, Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, John Wiley & Sons, Chichester, 2007, 862 pp.; DOI: https://doi.org/10.1002/9780470516898.

    Book  Google Scholar 

  369. D. F. Hunt, F. W. Crow, Anal. Chem., 1978, 50, 1781; DOI: https://doi.org/10.1021/ac50035a017.

    Article  CAS  Google Scholar 

  370. M. V. Buchanan, G. Olerich, Org. Mass Spectrom., 1984, 19, 486; DOI: https://doi.org/10.1002/oms.1210191005.

    Article  CAS  Google Scholar 

  371. N. P. Gurprasad, N. A. Haidar, T. G. Manners, Commun. Soil Sci. Plant Analysis, 2002, 33, 3449; DOI: https://doi.org/10.1081/CSS-120014539.

    Article  CAS  Google Scholar 

  372. V. G. Voinov, Yu. N. El’kin, T. A. Kuznetsova, I. I. Mal’tsev, V. V. Mikhailov, V. A. Sasunkevich, J. Chromatogr. A, 1991, 586, 360; DOI: https://doi.org/10.1016/0021-9673(91)85146-7.

    Article  CAS  Google Scholar 

  373. R. N. Compton, R. H. Huebner, P. W. Reinhardt, L. G. Christophorou, J. Chem. Phys., 1968, 48, 901; DOI: https://doi.org/10.1063/1.1668733.

    Article  CAS  Google Scholar 

  374. I. K. Gregor, M. Guilhaus, Int. J. Mass Spectrom. Ion Processes, 1984, 56, 167; DOI: https://doi.org/10.1016/0168-1176(84)85041-7.

    Article  CAS  Google Scholar 

  375. V. D. Berkout, P. H. Mazurkiewicz, M. L. Deinzer, Rapid Commun. Mass Spectrom., 1999, 13, 1850; DOI: https://doi.org/10.1002/(sici)1097-0231(19990930)13:18<1850::aid-rcm728>3.0.co;2-p.

    Article  CAS  PubMed  Google Scholar 

  376. Handbook of Toxicology of Chemical Warfare Agents, Ed. R. C. Gupta, Academic Press imprint of Elsevier, London, UK, 2009.

    Google Scholar 

  377. N. N. Melnikov, Pestitsydy: khimiya, tekhnologiya i primenenie [Pesticides: Chemistry, Technology, and Applications], Khimiya, Moscow, 1987, 712 pp. (in Russian).

    Google Scholar 

  378. I. Rodin, A. Braun, A. Stavrianidi, T. Baygildiev, O. Shpigun, D. Oreshkin, I. Rybalchenko, J. Anal. Toxicol., 2014, 39, 69; DOI: https://doi.org/10.1093/jat/bku119.

    Article  PubMed  CAS  Google Scholar 

  379. T. M. Baygildiev, I. A. Rodin, A. N. Stavrianidi, A. V. Braun, A. T. Lebedev, I. V. Rybalchenko, O. A. Shpigun, J. Chromatogr., 2016, 1442, 19; DOI: https://doi.org/10.1016/j.chroma.2016.03.001.

    Article  CAS  Google Scholar 

  380. OPCW Central Analytical Database, e-OCAD, Ver. 16, Technical Secretariat of the Organization for the Prohibition of Chemical Weapons, 2014.

  381. J. A. Laramee, M. L. Deinzer, Anal. Chem., 1994, 66, 719; DOI: https://doi.org/10.1021/ac00077a022.

    Article  CAS  PubMed  Google Scholar 

  382. M. E. Walsh, Talanta, 2001, 54, 427; DOI: https://doi.org/10.1016/S0039-9140(00)00541-5.

    Article  CAS  PubMed  Google Scholar 

  383. V. M. Gruznov, M. N. Baldin, M. V. Pryamov, E. M. Maksimov, J. Anal. Chem., 2017, 72, 1155; DOI: https://doi.org/10.1134/S1061934817110041.

    Article  CAS  Google Scholar 

  384. W. M. A. Niessen, Current Practice of Gas Chromatography-Mass Spectrometry, Marcel Dekker, New York, USA, 2001, 507 pp.

    Book  Google Scholar 

  385. P. Sulzer, F. Rondino, S. Ptasinska, E. Illenberger, T. D. Märk, P. Scheier, Int. J. Mass Spectrom., 2008, 272, 149; DOI: https://doi.org/10.1016/j.iims.2008.02.007.

    Article  CAS  Google Scholar 

  386. A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limão-Vieira, P. Scheier, Int. J. Mass Spectrom., 2008, 277, 123; DOI: https://doi.org/10.1016/j.iims.2008.06.006.

    Article  CAS  Google Scholar 

  387. F. da Silva, P. Sulzer, T. D. Mark, P. M. A. L. Limão-Vieira, S. Denifl, P. Scheier, Int. J. Mass Spectrom., 2012, 309, 39; DOI: https://doi.org/10.1016/j.iims.2011.08.021.

    Article  CAS  Google Scholar 

  388. C. J. M. Pruitt, D. J. Goebbert, Chem. Phys. Lett., 2013, 580, 21; DOI: https://doi.org/10.1016/j.cplett.2013.06.050.

    Article  CAS  Google Scholar 

  389. Database Certificate RU 2015621486; Programmy dlya EVM. Bazy dannykh. Topologii integral’nykh mikroskhem [Computer Programs. Databases. Topographies of Integrated Circuits], 2015, No. 10 (in Russian).

  390. I. I. Furlei, V. K. Mavrodiev, E. E. Shults, R. V. Kunakova, U. M. Dzhemilev, G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 34, 2291; DOI: https://doi.org/10.1007/BF00956786.

    Article  Google Scholar 

  391. V. I. Khvostenko, I. I. Furlei, V. K. Mavrodiev, G. V. Leplyanin, A. R. Derzhinskii, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1984, 33, 1517; DOI: https://doi.org/10.1007/BF00956544.

    Article  Google Scholar 

  392. J.-C. Blais, M. Cottin, B. Gitton, J. Chim. Phys. Physico-Chimie Biolog., 1970, 67, 1475; DOI: https://doi.org/10.1051/jcp/1970671475.

    Article  CAS  Google Scholar 

  393. V. S. Shmakov, I. I. Furlei, N. K. Lyapina, V. I. Khvostenko, A. A. Polyakova, M. A. Parfenova, A. A. Voltsov, G. A. Tolstikov, Petroleum Chem. USSR, 1986, 26, 185; DOI: https://doi.org/10.1016/0031-6458(86)90056-0].

    Article  Google Scholar 

  394. V. S. Shmakov, N. K. Liapina, I. I. Furlei, A. D. Ulendeeva, A. S. Vorobiev, G. A. Tolstikov, Dokl. AN SSSR [Dokl. Akad. Nauk SSSR], 1987, 296, 619 (in Russian).

    CAS  Google Scholar 

  395. M. V. Muftakhov, P. V. Shchukin, Rapid Commun. Mass Spectrom., 2019, 33, 482; DOI: https://doi.org/10.1002/rcm.8354.

    Article  CAS  PubMed  Google Scholar 

  396. E. A. Krylova, S. S. Kataev, Yu. A. Khomov, Fundament. issled. (elektron. zhurn.) [Basic Research (electronic journal)], 2014, Iss. 5, Pt. 5, 1044 (in Russian).

    Google Scholar 

  397. V. Zaikin, J. Halket, A Handbook of Derivatives for Mass Spectrometry, IMPublications, Chichester, 2009, 513 pp.

    Google Scholar 

  398. Yu. V. Vasil’ev, B. J. Figard, D. F. Barofsky, M. L. Deinzer, Int. J. Mass Spectrom., 2007, 268, 106; DOI: https://doi.org/10.1016/j.ijms.2007.07.006.

    Article  CAS  Google Scholar 

  399. H. J. Leis, H. Schütz, W. Windischhofer, Anal. Bioanal. Chem., 2011, 400, 2663; DOI: https://doi.org/10.1007/s00216-011-5048-6.

    Article  CAS  PubMed  Google Scholar 

  400. D. B. Naritsin, R. L. Boni, S. P. Markey, Anal. Chem., 1995, 67, 863; DOI: https://doi.org/10.1021/ac00101a012.

    Article  CAS  PubMed  Google Scholar 

  401. T. M. Trainor, P. Vouros, Anal. Chem., 1987, 59, 601; DOI: https://doi.org/10.1021/ac00131a014.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. V. Khatymov or A. G. Terentyev.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 605–646, April, 2021.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 19-13-50350 “Expansion”).

This work does not involve human participants and animal subjects.

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatymov, R.V., Terentyev, A.G. Resonant electron capture negative ion mass spectrometry: the state of the art and the potential for solving analytical problems. Russ Chem Bull 70, 605–646 (2021). https://doi.org/10.1007/s11172-021-3132-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3132-4

Key words

Navigation