Log in

Hydrogenation of CO2 to synthetic natural gas over supported nickel catalyst: effect of support on methane selectivity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nickel-based catalysts were prepared by co-precipitation method and applied for the CO2 conversion to synthetic natural gas. Two batches of catalysts were prepared with the different amount of Ni and were characterized by various techniques such as XRD, TPD, TPR, XPS, and TEM. Catalytic activity was studied under atmospheric pressure, a temperature of 350 °C, GHSV of 2000 h−1 and N2:CO2:H2 = 4:1:4. Highest CO2 conversion achieved was 70 with 99 % selectivity to methane. The activity of catalysts depends on the nickel content and nickel dispersion. Selectivity to methane depends inversely on the concentration of weak and moderate strength basic sites. Comparable quantity of basic sites present over catalysts, the methane selectivity is observed to be similar but the CO2 conversion changed due to change in Ni content. Catalysts having equal amounts of Ni exhibited increase in CH4 selectivity with the decrease in basic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.K. Pachauri, L.A. Meyer, Climate Change 2014 Synthesis Report. In Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014 IPCC, Geneva, Switzerland, p 151

  2. X. Zhang, K. Caldeira, Geophys. Res. Lett. 42, 4548–4555 (2015)

    Article  CAS  Google Scholar 

  3. J. Corfee-Morlot, N. Höhne, Glob. Environ. Chang. 13, 277–293 (2003)

    Article  Google Scholar 

  4. Z. Liu, B. Chu, X. Zhai, Y. **, Y. Cheng, Fuel 95, 599–605 (2012)

    Article  CAS  Google Scholar 

  5. Y. Li, Q. Zhang, R. Chai, G. Zhao, F. Cao, Y. Liu, Y. Lu, Appl. Catal. A 510, 216–226 (2016)

    Article  CAS  Google Scholar 

  6. F.D. Meylan, V. Moreau, S. Erkman, Energy Policy 94, 366–376 (2016)

    Article  CAS  Google Scholar 

  7. E. Baraj, S. Vagaský, T. Hlinčik, K. Ciahotný, V. Tekáč, Chem. Pap. 70, 395–403 (2016)

    Article  CAS  Google Scholar 

  8. X. Su, J. Xu, B. Liang, H. Duan, B. Hou, Y. Huang, J. Energy Chem. 25, 553–565 (2016)

    Article  Google Scholar 

  9. M.A.A. Aziz, A.A. Jalil, S. Triwahyono, A. Ahmad, Green Chem. 17, 2647–2663 (2015)

    Article  CAS  Google Scholar 

  10. D.C.D. da Silva, S. Letichevsky, L.E.P. Borges, L.G. Appel, Int. J. Hydrog. Energy 37, 8923–8928 (2012)

    Article  Google Scholar 

  11. T. Van Herwijnen, H. Van Doesburg, W.A. De Jong, J. Catal. 28, 391–402 (1973)

    Article  Google Scholar 

  12. P.J. Lunde, F.L. Kester, Ind. Eng. Chem. Proc. Des. Dev. 13, 27–33 (1974)

    Article  CAS  Google Scholar 

  13. A. Karelovic, P. Ruiz, J. Catal. 301, 141–153 (2013)

    Article  CAS  Google Scholar 

  14. A. Karelovic, P. Ruiz, Appl. Catal. B 113–114, 237–249 (2012)

    Article  Google Scholar 

  15. C. Deleitenburg, A. Trovarelli, J. Catal. 156, 171–174 (1995)

    Article  CAS  Google Scholar 

  16. J.-N. Park, E.W. McFarland, J. Catal. 266, 92–97 (2009)

    Article  CAS  Google Scholar 

  17. C. Schild, A. Wokaun, A. Baiker, J. Mol. Catal. 69, 347–357 (1991)

    Article  CAS  Google Scholar 

  18. A. Erdöhelyi, M. Pásztor, F. Solymosi, J. Catal. 98, 166–177 (1986)

    Article  Google Scholar 

  19. N. Srisawad, W. Chaitree, O. Mekasuwandumrong, A. Shotipruk, B. Jongsomjit, J. Panpranot, React. Kinet. Mech. Cat. 107, 179–188 (2012)

    Article  CAS  Google Scholar 

  20. C. Janke, M.S. Duyar, M. Hoskins, R. Farrauto, Appl. Catal. B 152–153, 184–191 (2014)

    Article  Google Scholar 

  21. S. Abate, C. Mebrahtu, E. Giglio, F. Deorsola, S. Bensaid, S. Perathoner, R. Pirone, G. Centi, Ind. Eng. Chem. Res. 55, 4451–4460 (2016)

    Article  CAS  Google Scholar 

  22. W. Makowski, R. Dziembaj, J. Mol. Cat. A 91, 353–367 (1994)

    Article  CAS  Google Scholar 

  23. S. Abelló, C. Berrueco, D. Montané, Fuel 113, 598–609 (2013)

    Article  Google Scholar 

  24. I. Graça, L.V. González, M.C. Bacariza, A. Fernandes, C. Henriques, J.M. Lopes, M.F. Ribeiro, Appl. Catal. B 147, 101–110 (2014)

    Article  Google Scholar 

  25. B. Lu, K. Kawamoto, Fuel 103, 699–704 (2013)

    Article  CAS  Google Scholar 

  26. Q. Pan, J. Peng, T. Sun, D. Gao, S. Wang, S. Wang, Fuel Process. Technol. 123, 166–171 (2014)

    Article  CAS  Google Scholar 

  27. H. Lu, X. Yang, G. Gao, K. Wang, Q. Shi, J. Wang, C. Han, J. Liu, M. Tong, X. Liang, C. Li, Int. J. Hydrog. Energy 39, 18894–18907 (2014)

    Article  CAS  Google Scholar 

  28. G.D. Weatherbee, C.H. Bartholomew, J. Catal. 68, 67–76 (1981)

    Article  CAS  Google Scholar 

  29. Q. Pan, J. Peng, T. Sun, S. Wang, S. Wang, Catal. Commun. 45, 74–78 (2014)

    Article  Google Scholar 

  30. M.A.A. Aziz, A.A. Jalil, S. Triwahyono, M.W.A. Saad, Chem. Eng. J. 260, 757–764 (2015)

    Article  CAS  Google Scholar 

  31. S.K. Beaumont, S. Alayoglu, C. Specht, N. Kruse, G.A. Somorjai, Nano Lett. 14, 4792–4796 (2014)

    Article  CAS  Google Scholar 

  32. J. Ren, X. Qin, J.-Z. Yang, Z.-F. Qin, H.-L. Guo, J.-Y. Lin, Z. Li, Fuel Process. Technol. 137, 204–211 (2015)

    Article  CAS  Google Scholar 

  33. F. Koschany, D. Schlereth, O. Hinrichsen, Appl. Catal. B 181, 504–516 (2016)

    Article  CAS  Google Scholar 

  34. G. Poncelet, M. Centeno, R. Molina, Appl. Catal. A 288, 232–242 (2005)

    Article  CAS  Google Scholar 

  35. G. Li, L. Hu, J.M. Hill, Appl. Catal. A 301, 16–24 (2006)

    Article  CAS  Google Scholar 

  36. P.F. Rossi, G. Busca, V. Lorenzelli, M. Waqif, O. Saw, J.-C. Lavalley, Langmuir 7, 2677–2681 (1991)

    Article  CAS  Google Scholar 

  37. S.F. Moya, R.L. Martins, M. Schmal, Appl. Catal. A 396, 159–169 (2011)

    Article  CAS  Google Scholar 

  38. Z.L. Zhang, A. Kladi, X.E. Verykios, J. Catal. 148, 737–747 (1994)

    Article  CAS  Google Scholar 

  39. L. Dietz, S. Piccinin, M. Maestri, J. Phys. Chem. C 119, 4959–4966 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the Korea Institute of Science and Technology (Project No. 2E26570) and Ministry of Trade, Industry, and Energy, Korea. (Project No. 20142010102790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ju Moon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodala, J.L., Jung, JS., Yang, EH. et al. Hydrogenation of CO2 to synthetic natural gas over supported nickel catalyst: effect of support on methane selectivity. Res Chem Intermed 43, 2931–2943 (2017). https://doi.org/10.1007/s11164-016-2804-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2804-4

Keywords

Navigation