Log in

NO2 adsorption behaviors on the intrinsic, B-site doped, and oxygen vacancy defective LaFeO3 (010) surface

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The first-principle calculations were performed to study the NO2 adsorption behaviors on the intrinsic, B-site doped, and oxygen vacancy defective LaFeO3 (010) surface. The N-atom prefers to be adsorbed on the Fe site of the LaFeO3 (010) surface, and NO2 acts as the electron acceptor to obtain electrons from the LaFeO3 (010) surface. The bonding mechanism of NO2 adsorption on the intrinsic LaFeO3 (010) surface is the strong orbital hybridization between the Fe 3d and N 2p orbits. The substituting surface Fe by Ni, Cu, or Zn can effectively improve the NO2 adsorption performance, and the most substantial adsorption occurs between NO2 and the surface Ni atom. The oxygen vacancy defect can introduce a dangling bond and rearrange the charge distribution of neighboring Fe and O atoms. NO2 is preferentially adsorbed at the position of oxygen vacancy due to the stronger orbital hybridization between the surface Fe and O atom in NO2, and oxygen vacancy successfully transfers the NO2 adsorption behavior.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Cheng YF, Zheng GJ, Wei C, Mu Q, Zheng B, Wang ZB, Gao M, Zhang Q, He KB, Carmichael G, Poschl U, Su H (2016) Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci Adv 2:e1601530

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhao B, Wang SX, Liu H, Xu JY, Fu K, Klimont Z, Hao JM, He KB, Cofala J, Amann M (2013) NOx emissions in China: historical trends and future perspectives. Atmos Chem Phys 13:9869–9897

    Article  Google Scholar 

  3. Roy S, Baiker A (2009) NOx storage-reduction catalysis: from mechanism and materials properties to storage-reduction performance. Chem Rev 109:4054–4091

    Article  PubMed  CAS  Google Scholar 

  4. Shao J, Ma Q, Wang Z, Tang H, He Y, Zhu Y, Cen K (2019) A superior liquid phase catalyst for enhanced absorption of NO2 together with SO2 after low temperature ozone oxidation for flue gas treatment. Fuel 247:1–9

    Article  CAS  Google Scholar 

  5. Chen L, Ondarts M, Outin J, Gonthier Y, Gonze E (2018) Catalytic decomposition performance for O3 and NO2 in humid indoor air on a MnOx/Al2O3 catalyst modified by a cost-effective chemical grafting method. J Environ Sci 74:58–70

    Article  CAS  Google Scholar 

  6. Chen YH, Zhang BW, Yang L, Zhang ML, Zhang CR, Kang L, Luo YC (2014) First-principle study of H2 adsorption on LaFeO3 (110) surface. J Nanomater 2014:16–16

    Article  Google Scholar 

  7. Liu X, Hu J, Cheng B, Qin H, Zhao M, Yang C (2009) First-principles study of O2 adsorption on the LaFeO3 (010) surface. Sens Actuators B 139:520–526

    Article  CAS  Google Scholar 

  8. Sun L, Hu J, Zhang L, Gao F, Zhang Y, Qin H (2011) Adsorption of CO on the O2 pre-adsorbed LaFeO3 (010) surface: a density functional theory study. Curr Appl Phys 11:1278–1281

    Article  Google Scholar 

  9. Wang X, Qin H, Sun L, Hu J (2013) CO2 sensing properties and mechanism of nanocrystalline LaFeO3 sensor. Sens Actuators B 188:965–971

    Article  CAS  Google Scholar 

  10. Sun L, Hu J, Gao F, Qin H (2011) Adsorption of formaldehyde on the Fe site of clean and M2+ (Ca2+, Sr2+ and Ba2+) doped LaFeO3 (010) surface. Appl Surf Sci 257:8692–8695

    Article  CAS  Google Scholar 

  11. Sun L, Hu J, Gao F, Zhang Y, Qin H (2011) First-principle study of NO adsorption on the LaFeO3 (010) surface. Physica B 406:4105–4108

    Article  CAS  Google Scholar 

  12. Sacchi M, Galbraith MC, Jenkins SJ (2012) The interaction of iron pyrite with oxygen, nitrogen and nitrogen oxides: a first-principles study. Phys Chem Chem Phys 14:3627–3633

    Article  PubMed  CAS  Google Scholar 

  13. Chen HL, Wu SY, Chen HT, Chang JG, Ju SP, Tsai C, Hsu LC (2010) Theoretical study on adsorption and dissociation of NO2 molecule on Fe(111) surface. Langmuir 26:7157–7164

    Article  PubMed  CAS  Google Scholar 

  14. Zhang XD, Zhang WL, Cai ZX, Li YK, Yamauchi Y, Guo X (2019) LaFeO3 porous hollow micro-spindles for NO2 sensing. Ceram Int 45:5240–5248

    Article  CAS  Google Scholar 

  15. Duan Z, Zhang Y, Tong Y, Zou H, Peng J, Zheng X (2017) Mixed-potential-type gas sensors based on Pt/YSZ Film/LaFeO3 for detecting NO2. J Electron Mater 46:6895–6900

    Article  CAS  Google Scholar 

  16. Armstrong EN, Striker T, Ramaswamy V, Ruud JA, Wachsman ED (2011) NOx adsorption behavior of LaFeO3 and LaMnO3+δ and its influence on potentiometric sensor response. Sens Actuators B Chem 158:159–170

    Article  CAS  Google Scholar 

  17. Bai S, Shi B, Ma L, Yang P, Liu Z, Li D, Chen A (2009) Synthesis of LaFeO3 catalytic materials and their sensing properties. Sci China B 52:2106–2113

    Article  CAS  Google Scholar 

  18. Taylor FH, Buckeridge J, Catlow CRA (2017) Screening divalent metals for A- and B-site dopants in LaFeO3. Chem Mater 29:8147–8157

    Article  CAS  Google Scholar 

  19. Yao X, Liu J, Wang W (2018) Influence of B-site transition metal on NO oxidation over LaBO3 (B=Mn, Fe and Co) perovskite catalysts. AIP Adv 8:115222

    Article  Google Scholar 

  20. Kizaki H, Kusakabe K (2012) DFT-GGA study of NO adsorption on the LaO (001) surface of LaFeO3. Surf Sci 606:337–343

    Article  CAS  Google Scholar 

  21. Sun L, Hu J, Qin H, Zhao M, Fan K (2011) Influences of Ca do** and oxygen vacancy upon adsorption of CO on the LaFeO3 (010) surface: a first-principles study. J Phys Chem C 115:5593–5598

    Article  CAS  Google Scholar 

  22. Hong J, Stroppa A, Íñiguez J, Picozzi S, Vanderbilt D (2012) Spin-phonon coupling effects in transition-metal perovskites: a DFT + U and hybrid-functional study. Phys Rev B 85:054417

    Article  Google Scholar 

  23. Arima T, Tokura Y, Torrance JB (1993) Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys Rev B 48:17006–17009

    Article  CAS  Google Scholar 

  24. Lee Y-L, Kleis J, Rossmeisl J, Morgan D (2009) Ab initio energetics of LaBO3(001) (B=Mn, Fe Co, and Ni) for solid oxide fuel cell cathodes. Phys Rev B 80:224101

    Article  Google Scholar 

  25. Tutuianu M, Inderwildi OR, Bessler WG, Warnatz J (2006) Competitive adsorption of NO, NO2, CO2, and H2O on BaO(100): a quantum chemical study. J Phys Chem B 110:17484–17492

    Article  PubMed  CAS  Google Scholar 

  26. Su T, Qin Z, Huang G, Ji H, Jiang Y, Chen J (2016) Density functional theory study on the interaction of CO2 with Fe3O4(111) surface. Appl Surf Sci 378:270–276

    Article  CAS  Google Scholar 

  27. Li L, Zhang G, Li J, Chen D, Cheng Z, Wang Y (2019) Electric field induced two-dimensional electron gas and magnetism in LaFeO3/SrTiO3 (001) heterostructures. Appl Surf Sci 471:185–195

    Article  CAS  Google Scholar 

  28. Lee S, Chen R, Balents L (2011) Metal-insulator transition in a two-band model for the perovskite nickelates. Phys Rev B 84:165119

    Article  Google Scholar 

  29. **ao G, **n S, Wang H, Zhang R, Wei Q, Lin Y (2019) Catalytic oxidation of styrene over Ce-substituted La1–xCexMnO3 catalysts. Ind Eng Chem Res 58:5388–5396

    Article  CAS  Google Scholar 

  30. Shen W, Li K, Zhang Y, Li Y, Lin Y (2023) Catalytic properties of Cu-substituted LaMn1-yCuyO3 on styrene combustion. Reac Kinet Mech Cat 136:805–822

    Article  CAS  Google Scholar 

  31. Lago R, Bini G, Peña MA, Fierro JLG (1997) Partial oxidation of methane to synthesis gas using LnCoO3 perovskites as catalyst precursors. J Catal 167:198–209

    Article  CAS  Google Scholar 

  32. Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2018

    Article  PubMed  Google Scholar 

  33. Baiker A, Marti PE, Keusch P, Fritsch E, Reller A (1994) Influence of the A-site cation in ACoO3 (A = La, Pr, Nd, and Gd) perovskite-type oxides on catalytic activity for methane combustion. J Catal 146:268–276

    Article  CAS  Google Scholar 

  34. Pan KL, Chen MC, Yu SJ, Yan SY, Chang MB (2016) Enhancement of nitric oxide decomposition efficiency achieved with lanthanum-based perovskite-type catalyst. J Air Waste Manag Assoc 66:619–630

    Article  PubMed  CAS  Google Scholar 

  35. Kim J, Yin X, Tsao KC, Fang S, Yang H (2014) Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J Am Soc 136:14646–14649

    Article  CAS  Google Scholar 

  36. Hu J, Wang L, Shi L, Huang H (2015) Oxygen reduction reaction activity of LaMn1-xCoxO3-graphene nanocomposite for zinc-air battery. Electrochim Acta 161:115–123

    Article  CAS  Google Scholar 

  37. Pan CC, Chen YH, Wu N, Zhang ML, Yuan LH, Zhang CR (2016) First-principle study of O vacancy on LaNiO3 (001) surface. Int J Hydrogen Energy 41:15756–15763

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Key Technologies Research and Development Program (No. 2018YFB0605200) supports the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Lin.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shen, W., Li, K. et al. NO2 adsorption behaviors on the intrinsic, B-site doped, and oxygen vacancy defective LaFeO3 (010) surface. Reac Kinet Mech Cat 137, 177–193 (2024). https://doi.org/10.1007/s11144-023-02529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02529-2

Keywords

Navigation