Log in

Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni–Co–Fe catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, bamboo-shaped, multi-walled carbon nanotubes were synthesized via methane decomposition over a Ni–Co–Fe tri-metallic catalyst at 1000 °C. The nitrogen absorption (BET), X-ray diffraction (XRD), and particle size analysis results of the catalyst were used to demonstrate the surface area, size distribution, and crystallinity of the sample. The scanning electron microscopy (SEM) micrographs of the nanocarbons deposited via methane decomposition indicated that highly uniform carbon nanotubes were grown on the surface of the tri-metallic catalyst. The transmission electron microscopy (TEM) images showed that the carbon nanotubes were multi-walled and bamboo-shaped with a diameter of ~20 nm. Raman spectra revealed the graphitization degree of the CNTs with an I D /I G of 1.84, indicative of the crystallinity of CNTs with structural defects. The thermal analysis shows the high oxidation stability of the multi-walled carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  2. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG (1996) Crystalline ropes of metallic carbon nanotubes. Science-AAAS-Wkly Pap Ed 273(5274):483–487

    CAS  Google Scholar 

  3. Pipes RB, Hubert P (2002) Helical carbon nanotube arrays: mechanical properties. Compos Sci Technol 62(3):419–428

    Article  CAS  Google Scholar 

  4. Robertson J (2004) Realistic applications of CNTs. Mater Today 7(10):46–52

    Article  CAS  Google Scholar 

  5. Chambers A, Park C, Baker RTK, Rodriguez NM (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102(22):4253–4256

    Article  CAS  Google Scholar 

  6. Lu Y, Zhu Z, Su D, Wang D, Liu Z, Schlögl R (2004) Formation of bamboo-shape carbon nanotubes by controlled rapid decomposition of picric acid. Carbon 42(15):3199–3207

    Article  CAS  Google Scholar 

  7. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  Google Scholar 

  8. Liu Q, Fang Y (2006) New technique of synthesizing single-walled carbon nanotubes from ethanol using fluidized-bed over Fe–Mo/MgO catalyst. Spectrochim Acta Part A Mol Biomol Spectrosc 64(2):296–300

    Article  Google Scholar 

  9. Jo S, Tu Y, Huang Z, Carnahan D, Wang D, Ren Z (2003) Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl Phys Lett 82(20):3520–3522

    Article  CAS  Google Scholar 

  10. Hoyos-Palacio L, García A, Pérez-Robles J, González J, Martínez-Tejada H (2014) Catalytic effect of Fe, Ni, Co and Mo on the CNTs production. In: IOP conference series: materials science and engineering, vol. 1. IOP Publishing, p 012005

  11. Pudukudy M, Yaakob Z (2015) Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO 2 microflakes. Chem Eng J 262:1009–1021

    Article  CAS  Google Scholar 

  12. Seidel R, Duesberg GS, Unger E, Graham AP, Liebau M, Kreupl F (2004) Chemical vapor deposition growth of single-walled carbon nanotubes at 600 °C and a simple growth model. J Phys Chem B 108(6):1888–1893

    Article  CAS  Google Scholar 

  13. Hernadi K, Fonseca A, Nagy J, Bernaerts D, Lucas A (1996) Fe-catalyzed carbon nanotube formation. Carbon 34(10):1249–1257

    Article  CAS  Google Scholar 

  14. Hernadi K, Fonseca A, Nagy J, Bemaerts D, Fudala A, Lucas A (1996) Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites 17(5):416–423

    Article  CAS  Google Scholar 

  15. Choudhary T, Goodman D (2006) Methane decomposition: production of hydrogen and carbon filaments. Catalysis 19:164–183

    Article  CAS  Google Scholar 

  16. Pełech I, Narkiewicz U, Kaczmarek A, Jędrzejewska A (2014) Preparation and characterization of multi-walled carbon nanotubes grown on transition metal catalysts. Pol J Chem Technol 16(1):117–122

    Google Scholar 

  17. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758

    Article  CAS  Google Scholar 

  18. Wu H, Pantaleo G, La Parola V, Venezia AM, Collard X, Aprile C, Liotta LF (2014) Bi-and trimetallic Ni catalysts over Al2O3 and Al2O3-MOx(M=Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects. Appl Catal B 156:350–361

    Article  Google Scholar 

  19. Halonen N, Sápi A, Nagy L, Puskás R, Leino AR, Mäklin J, Kukkola J, Tóth G, Wu MC, Liao HC (2011) Low‐temperature growth of multi‐walled carbon nanotubes by thermal CVD. Phys Status Solidi (b) 248(11):2500–2503

    Article  CAS  Google Scholar 

  20. Bhavani AG, Kim WY, Kim JY, Lee JS (2013) Improved activity and coke resistance by promoters of nanosized trimetallic catalysts for autothermal carbon dioxide reforming of methane. Appl Catal A 450:63–72

    Article  CAS  Google Scholar 

  21. Han IT, Kim HJ, Park Y-J, Lee N, Jang JE, Kim JW, Jung JE, Kim JM (2002) Fabrication and characterization of gated field emitter arrays with self-aligned carbon nanotubes grown by chemical vapor deposition. Appl Phys Lett 81(11):2070–2072

    Article  CAS  Google Scholar 

  22. Li Y, Li D, Wang G (2011) Methane decomposition to CO x-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: a review. Catal Today 162(1):1–48

    Article  CAS  Google Scholar 

  23. Chungchamroenkit P, Chavadej S, Yanatatsaneejit U, Kitiyanan B (2008) Residue catalyst support removal and purification of carbon nanotubes by NaOH leaching and froth flotation. Sep Purif Technol 60(2):206–214. doi:10.1016/j.seppur.2007.08.009

    Article  CAS  Google Scholar 

  24. Park T-J, Banerjee S, Hemraj-Benny T, Wong SS (2006) Purification strategies and purity visualization techniques for single-walled carbon nanotubes. J Mater Chem 16(2):141–154

    Article  CAS  Google Scholar 

  25. Ebbesen TW (1996) Carbon nanotubes. Phys Today 49(6):26–35

    Article  CAS  Google Scholar 

  26. Hou P-X, Liu C, Cheng H-M (2008) Purification of carbon nanotubes. Carbon 46(15):2003–2025

    Article  CAS  Google Scholar 

  27. Matzinger K (2006) Evolution of metal catalyst during CVD synthesis of carbon nanotubes. Université de Fribourg

  28. Bladh K, Falk L, Rohmund F (2000) On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Appl Phys A 70(3):317–322

    Article  CAS  Google Scholar 

  29. Rodriguez N, Kim M, Baker R (1993) Deactivation of copper nickel-catalysts due to changes in surface composition. J Catal 140(1):16–29

    Article  CAS  Google Scholar 

  30. Cui YB, Zhan SL, Wu XF, Gong GZ, Tian YJ, Chen YF (2008) Tri-metallic catalyst for mass production of quasi-aligned carbon nanotubes by thermal chemical vapor deposition. Key Eng Mater 368:1507–1509

    Article  Google Scholar 

  31. Li Y, Zhang X, Tao X, Xu J, Huang W, Luo J, Luo Z, Li T, Liu F, Bao Y (2005) Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 43(2):295–301

    Article  CAS  Google Scholar 

  32. Dupuis A-C (2005) The catalyst in the CCVD of carbon nanotubes—a review. Prog Mater Sci 50(8):929–961

    Article  CAS  Google Scholar 

  33. Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607

    Article  CAS  Google Scholar 

  34. Magrez A, Seo JW, Smajda R, Mionić M, Forró L (2010) Catalytic CVD synthesis of carbon nanotubes: towards high yield and low temperature growth. Materials 3(11):4871–4891

    Article  CAS  Google Scholar 

  35. Isaza MN, Pachon Z, Kafarov V, Resasco DE (2000) Deactivation of Ni–Mo/Al 2 O 3 catalysts aged in a commercial reactor during the hydrotreating of deasphalted vacuum residuum. Appl Catal A 199(2):263–273

    Article  CAS  Google Scholar 

  36. Kathyayini H, Reddy KV, Nagy J, Nagaraju N (2008) Synthesis of carbon nanotubes over transition metal ions supported on Al (OH) 3. Indian J Chem, Sect A 47(5):663

    Google Scholar 

  37. Samandari-Masouleh L, Mostoufi N, Khodadadi A, Mortazavi Y, Maghrebi M (2012) Kinetic modeling of carbon nanotube production and minimization of amorphous carbon overlayer deposition in floating catalyst method. Int J Chem React Eng 10(1): 58

    Google Scholar 

  38. Taleshi F (2012) Evaluation of new processes to achieve a high yield of carbon nanotubes by CVD method. Int Nano Lett 2(1):1–5

    Article  Google Scholar 

  39. Méhn D, Fonseca A, Bister G, Nagy JB (2004) A comparison of different preparation methods of Fe/Mo/Al2O3 sol–gel catalyst for synthesis of single wall carbon nanotubes. Chem Phys Lett 393(4–6):378–384. doi:10.1016/j.cplett.2004.06.071

    Article  Google Scholar 

  40. Wang Y, Wei F, Luo G, Yu H, Gu G (2002) The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem Phys Lett 364(5–6):568–572. doi:10.1016/S0009-2614(02)01384-2

    Article  CAS  Google Scholar 

  41. Mora E, Tokune T, Harutyunyan AR (2007) Continuous production of single-walled carbon nanotubes using a supported floating catalyst. Carbon 45(5):971–977

    Article  CAS  Google Scholar 

  42. Musso S, Fanchini G, Tagliaferro A (2005) Growth of vertically aligned carbon nanotubes by CVD by evaporation of carbon precursors. Diam Relat Mater 14(3):784–789

    Article  CAS  Google Scholar 

  43. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Article  CAS  Google Scholar 

  44. Robertson J (1986) Amorphous carbon. Adv Phys 35(4):317–374

    Article  CAS  Google Scholar 

  45. Silva WM, Ribeiro H, Seara LM, Calado HD, Ferlauto AS, Paniago RM, Leite CF, Silva GG (2012) Surface properties of oxidized and aminated multi-walled carbon nanotubes. J Braz Chem Soc 23(6):1078–1086

    Article  CAS  Google Scholar 

  46. Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus M (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60(3):413–550

    Article  CAS  Google Scholar 

  47. Yadav RM, Dobal PS, Shripathi T, Katiyar R, Srivastava O (2009) Effect of growth temperature on bamboo-shaped carbon–nitrogen (C–N) nanotubes synthesized using ferrocene acetonitrile precursor. Nanoscale Res Lett 4(3):197–203

    Article  CAS  Google Scholar 

  48. Krishna VM, Abilarasu A, Somanathan T, Gokulakrishnan N (2014) Effective synthesis of well graphitized high yield bamboo-like multi-walled carbon nanotubes on copper loaded α-alumina nanoparticles. Diam Relat Mater 50:20–25

    Article  Google Scholar 

  49. Brandalise M, Verjulio-Silva RWR, Tusi MM, Correa OV, Farias LA, Linardi M, Spinacé EV, Neto AO (2009) Electro-oxidation of ethanol using PtRuBi/C electrocatalyst prepared by borohydride reduction. Ionics 15(6):743–747. doi:10.1007/s11581-009-0340-6

    Article  CAS  Google Scholar 

  50. Kitiyanan B, Alvarez W, Harwell J, Resasco D (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 317(3):497–503

    Article  CAS  Google Scholar 

  51. Tang S, Zhong Z, **ong Z, Sun L, Liu L, Lin J, Shen Z, Tan K (2001) Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chem Phys Lett 350(1):19–26

    Article  CAS  Google Scholar 

  52. Basu D, Basu S (2012) Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. Int J Hydrog Energy 37(5):4678–4684. doi:10.1016/j.ijhydene.2011.04.158

    Article  CAS  Google Scholar 

  53. Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38(6):728–736. doi:10.1002/jrs.1686

    Article  CAS  Google Scholar 

  54. Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8):2581–2602. doi:10.1016/j.carbon.2011.03.028

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge financial support provided by the CRIM,PKT6/2012 and DIP-2012-05 and FRGS/2/2013/TK05/UKM/02/3 funds, UKM, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghazaleh Allaedini or Siti Masrinda Tasirin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allaedini, G., Tasirin, S.M., Aminayi, P. et al. Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni–Co–Fe catalyst. Reac Kinet Mech Cat 116, 385–396 (2015). https://doi.org/10.1007/s11144-015-0897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0897-1

Keywords

Navigation