Log in

Correlating the field water balance derived crop coefficient (Kc) and canopy reflectance-based NDVI for irrigated sugarcane

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Studies of crop coefficients as a function of vegetation indices are reported less often for sugarcane than other crops because of the variation in crop evapotranspiration (ETc) and spectral response over the long growth period. In this study, the possibility of correlating crop coefficient (Kc) and ground based normalized difference vegetation index (NDVI) of a sugarcane crop was investigated based on 2 years field experiments conducted in 2015 and 2016 in semi-arid India. The Kc values for the full crop season were determined by the field water balance method and ground NDVI was estimated from spectral reflectance measurements using a field spectro-radiometer. The sugarcane Kc values for the tillering (development stage), grand growth (mid-season) and maturity stages (end season) were 0.70, 1.20 and 0.78, respectively. The results found that the Kc was 16.6% less than that suggested by FAO-56. The sugarcane NDVI ranged from 0.48 to 0.69 at the tillering stage and 0.69 to 0.93 in the grand growth stage. Unlike other crops, sugarcane NDVI at the maturity stage did not reduce from 0.85 even at harvest due to the continued production of fresh green leaves at the top of the plant. Regression equations were developed to estimate the seasonal distribution of Kc with NDVI as the dependent variables and ratio of days \(\left(\frac{t}{T}\right)\) after planting (t) to the total crop period (T) as the independent variable. The relationship between crop Kc and NDVI was characterized with 2nd order polynomial regression but correlation was moderately strong (r = 0.75, n = 315). Stronger correlations between Kc and NDVI were obtained by splitting growth period into the growth phase (r = 0.98, n = 245) and decline phase (r  =  0.99, n  =  70). The estimated Kc will be helpful for correcting irrigation scheduling of sugarcane in semi-arid conditions. The Kc-NDVI relationships for sugarcane investigated in this study are important for potential real time irrigation water management in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration. FAO Irrigation and Drainage Paper No. 56, Rome, Italy.

  • Almeida, T. I. R., De Souza, C. R., & Rossetto, R. (2006). ASTER and Landsat ETM + images applied to sugarcane yield forecast. International Journal of Remote Sensing, 27, 4057–4069.

    Article  Google Scholar 

  • Anderson, R. G., Wang, D., Tirado- Corbalá, R., Zhang, H., & Ayars, J. E. (2015). Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions. Hydrology and Earth System Science, 19, 583–599. https://doi.org/10.5194/hess-19-583-2015.

    Article  Google Scholar 

  • Bandyopadhyay, P. K., & Mallick, S. (2003). Actual evapotranspiration and crop coefficients of wheat (Triticum aestivum) under varying moisture levels of humid tropical canal command area. Agricultural Water Management, 59, 33–47. https://doi.org/10.1016/S0378-3774(02)00112-9.

    Article  Google Scholar 

  • Bastiaanssen, W. G. M., Molden, D. J., & Makin, I. W. (2000). Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural Water Management, 46(2), 137–155. https://doi.org/10.1016/S0378-3774(00)00080-9.

    Article  Google Scholar 

  • Bausch, W. C. (1995). Remote sensing of crop coefficients for improving the irrigation scheduling of corn. Agricultural Water Management, 27, 55–68. https://doi.org/10.1016/0378-3774(95)01125-3.

    Article  Google Scholar 

  • Bausch, W. C., & Neale, C. M. U. (1987). Crop coefficients derived from reflected canopy radiation: a concept. Transaction of the ASAE, 30(3), 703–709. https://doi.org/10.13031/2013.30463.

    Article  Google Scholar 

  • Becker-Reshef, I., Vermonte, E., & Justice, C. (2010). A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114, 1312–1323.

    Article  Google Scholar 

  • Begue, A., Lebourgeois, V., Bappel, E., Todoro, P., & Pellegrino, A. (2010). Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI. International Journal of Remote Sensing, 31(20), 5391–5407.

    Article  Google Scholar 

  • Bhagyawant, R. G. (2014). Deficit irrigation for Rabi onion production under semiarid condition. Ph.D. Thesis submitted to Mahatma Phule Krishi Vidyapeeth University, Rahuri, India.

  • Cardoso, G. G. G., Campos de Oliveira, R., Teixeira, M. B., Dorneles, M. S., Domingos, R. M. O., Megguer, C. A., et al. (2015). Sugarcane crop coefficient by the soil water balance method. African Journal of Agricultural Research, 10(24), 2407–2414. https://doi.org/10.5897/AJAR2015.9805.

    Article  Google Scholar 

  • Carr, M. K. V., & Knox, J. W. (2011). The water relations and irrigation requirements of sugar cane (Saccharum officinarum): A review. Experimental Agriculture, 47(1), 1–25. https://doi.org/10.1017/S0014479710000645.

    Article  Google Scholar 

  • Chabot, R., Bouarfa, S., Zimmer, D., Chaumont, C., & Moreau, S. (2005). Evaluation of the sap flow determined with a heat balance method to measure the transpiration of a sugarcane canopy. Agricultural Water Management, 75, 10–24. https://doi.org/10.1016/j.agwat.2004.12.010.

    Article  Google Scholar 

  • Choudhury, B. J., Ahmed, N. U., Idso, S. B., Reginato, R. J., & Daughtry, C. S. T. (1994). Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sensing of Environment, 50, 1–17. https://doi.org/10.1016/0034-4257(94)90090-6.

    Article  Google Scholar 

  • Commission for Cost and Prices (CACP). (2019). Price policy for sugarcane, 2019–2020 Sugar season (pp. 26–27). New Delhi: Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India.

    Google Scholar 

  • Dastane, N. G. (1974). Effective rainfall in irrigated agriculture. FAO Irrigation and Drainage Paper No. 25. Rome, Italy.

  • Doraiswamy, P. C., Hatfield, J. L., Jackson, T. J., Akhmedov, B., Prueger, J., Stern, A., et al. (2004). Crop conditions and yield simulations using Landsat and MODIS. Remote Sensing of Environment, 92, 548–559.

    Article  Google Scholar 

  • Ferrara, R. M., Fiorentino, C., Martinelli, N., Garofalo, P., & Rana, G. (2010). Comparison of different ground-based NDVI measurement methodologies to evaluate crop biophysical properties. Italian Journal of Agronomy, 5, 145–154.

    Article  Google Scholar 

  • Funk, C., & Budde, M. E. (2009). Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe. Remote Sensing of Environment, 113, 115–125.

    Article  Google Scholar 

  • Gautam, S. (2018). Multispectral remote sensing to estimate actual crop coefficients and evapotranspiration rates for grass pastures in western Colorado. PhD. thesis submitted to Colorado State University, Fort Collins, CO, USA.

  • Gontia, N. K., & Tiwari, K. N. (2010). Estimation of crop coefficient and evapotranspiration of wheat (Triticum aestivum) in an irrigation command using remote sensing and GIS. Water Resources Management, 24, 1399–1414. https://doi.org/10.1007/s11269-009-9505-3.

    Article  Google Scholar 

  • Gutman, G. G. (1999). On the use of long-term global data of land reflectances and vegetation indices derived from the advanced very high resolution radiometer. Journal of Geophysical Research, 104, 6241–6255. https://doi.org/10.1029/1998JD200106.

    Article  Google Scholar 

  • Heilman, J. L., Heilman, W. E., & Moore, D. G. (1982). Evaluating the crop coefficient using spectral reflectance. Agronomy Journal, 74, 967–971. https://doi.org/10.2134/agronj1982.00021962007400060010x.

    Article  Google Scholar 

  • Hill, M. J., & Donald, G. E. (2003). Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series. Remote Sensing of Environment, 84, 367–384.

    Article  Google Scholar 

  • Huemmerich, K. F., Black, T. A., Jarvis, P. G., McCaughey, J. H., & Halls, F. G. (1999). High temporal resolution NDVI phenology from micrometeorological radiation sensors. Journal of Geophysical Research, 104(D22), 27935–27944. https://doi.org/10.1029/1999JD900164.

    Article  Google Scholar 

  • Hunsaker, D. J., Pinter, P. J. Jr., Barnes, E. M., & Kimball, B. A. (2003). Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. Irrigation Science, 22, 95–104. https://doi.org/10.1007/s00271-003-0074-6.

    Article  Google Scholar 

  • Inman-Bamber, N. G., & McGlinchey, M. G. (2003). Crop coefficients and water-use estimates for sugarcane based on long-term Bowen ratio energy balance measurements. Field Crops Research, 83, 125–138. https://doi.org/10.1016/S0378-4290(03)00069-8.

    Article  Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. New Delhi, India: Prentice Hall of India Private Limited.

    Google Scholar 

  • Jackson, R. D., & Huete, A. R. (1992). Interpreting vegetation indices. Preventive Veterinary Medicine, 11, 185–200. https://doi.org/10.1016/S0167-5877(05)80004-2.

    Article  Google Scholar 

  • Jagtap, S. S., & Jones, J. W. (1989). Stability of crop coefficients under different climatic and irrigation management practices. Irrigation Science, 10, 231–244. https://doi.org/10.1007/BF00257955.

    Article  Google Scholar 

  • Jayanthi, H., Neale, C. M. U., & Wright, J. L. (2007). Development and validation of canopy reflectance based crop coefficient for potato. Agricultural Water Management, 88(1–3), 235–246. https://doi.org/10.1016/j.agwat.2006.10.020.

    Article  Google Scholar 

  • Kadam, S., Gorantiwar, S., Das, S., & Joshi, A. (2017). Crop evapotranspiration estimation for wheat (Triticum aestivum L.) using remote sensing data in semi-arid region of Maharashtra. Journal of the Indian Society of Remote Sensing, 45(2), ,297-305. https://doi.org/10.1007/s12524-016-0594-1.

    Article  Google Scholar 

  • Kamble, B., Irmak, A., & Hubbard, K. (2013). Estimating crop coefficients using remote sensing-based vegetation index. Remote Sensing, 5, 1588–1602. https://doi.org/10.3390/rs5041588.

    Article  Google Scholar 

  • Kastens, J. H., Kastens, T. L., Kastens, D. L. A., Price, K. P., Martinko, E. A., Lee, R., et al. (2005). Imagemasking for crop yield forecasting using AVHRR NDVI time series imagery. Remote Sensing of Environment, 113, 115–125.

    Google Scholar 

  • Krishidarshini. (2014). Official Publication of Mahatma Phule Krishi Vidyapeeth (An Agricultural University) (pp. 82–92), Rahuri, Maharashtra, India.

  • Michael, A. M. (2010). Irrigation: Theory and practice (3rd ed.). New Delhi, India: Vikas Publishing House Private Limited.

  • Mkhabela, M. S., Mkhabela, M. S., & Mashinini, N. N. (2005). Early maize yield forecasting in the four agro-ecological regions of Swaziland using NDVI data from NOAA’s AVHRR. Agricultural and Forest Meteorology, 129, 1–9.

    Article  Google Scholar 

  • Moran, M. S., Mass, S. J., & Pinter, Jr. P. J. (1995). Combining remote sensing and modelling for estimating surface evaporation and biomass production. Remote Sensing of Environment, 12, 335–353. https://doi.org/10.1080/02757259509532290.

    Article  Google Scholar 

  • Nagy, A., Peter, R., Eva, B., Bernadett, G., Peter, A. M., Janos, T., et al. (2013). Complex vegetation survey in a fruit plantation by spectral instruments. Agricultural Informatics, 4(2), 37–42. https://doi.org/10.17700/jai.2013.4.2.112.

    Article  Google Scholar 

  • Neale, C. M. U., Bausch, W. C., & Heerman, D. F. (1989). Development of reflectance-based crop coefficients for corn. Transactions of the ASAE, 32(6), 1891–1899. https://doi.org/10.13031/2013.31240.

    Article  Google Scholar 

  • Omary, M., & Izuno, F. T. (1995). Evaluation of sugarcane evapotranspiration from water table data in the Everglades agricultural area. Agricultural Water Management, 27, 309–319. https://doi.org/10.1016/0378-3774(95)01149-D.

    Article  Google Scholar 

  • Pawar, D. D., Dingre, S. K., & Durgude, A. G. (2014). Enhancing nutrient use and sugarcane (Saccharum officinarum) productivity with reduced cost through drip fertigation in Western Maharashtra. Indian Journal of Agricultural Sciences, 84(7), 844–849.

    Google Scholar 

  • Raki, S. E., Abdelghani, C., Guemouria, N., Duchemin, B., & Ezzahar, J. (2006). Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agricultural Water Management, 87, 41–54. doi:https://doi.org/10.1016/j.agwat.2006.02.004.

    Article  Google Scholar 

  • Reynolds, S. G. (1970). The gravimetric method of soil moisture determination. Part I: A study of equipment, and methodological problems. Journal of Hydrology, 11(3), 258–273. https://doi.org/10.1016/0022-1694(70)90066-1.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation of natural vegetation. NASA/GSFC, Type III. Final report (1-371), Greenbelt, MD.

  • Shibayama, M., & Akiyama, T. (1986). A spectroradiometer for field use: VI. Radiometric estimation for chlorophyll index of rice canopy. Japanese Journal of Crop Science, 55, 433–438.

    Article  Google Scholar 

  • Silva, V., Borges, C., Farias, C., Singh, V., Albuquerque, W., Silva, B., et al. (2012). Water requirements and single and dual crop coefficients of sugarcane grown in a tropical region, Brazil. Agricultural Sciences, 3, 274–286. https://doi.org/10.4236/as.2012.32032.

    Article  Google Scholar 

  • Simoes, M. D. S., Rocha, J. V., & Lamparelli, R. A. C. (2005). Spectral variables, growth analysis and yield of sugarcane. Scientia Agricola, 62, 199–207.

    Article  Google Scholar 

  • Singh, R. K., & Irmak, A. (2009). Estimation of crop coefficients using satellite remote sensing. Journal of Irrigation and Drainage Engineering, 135(5), 597–608. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000052.

    Article  Google Scholar 

  • Spiliotopoulos, M., & Loukas, A. (2019). Hybrid methodology for the estimation of crop coefficients based on satellite imagery and ground based measurements. Water, 11(7), 1364. https://doi.org/10.3390/w11071364.

    Article  Google Scholar 

  • Thompson, G. D., & Boyce, J. P. (1971). Comparisons of measured evapotranspiration of sugarcane from large and small lysimeters: In Proceedings of the South African Sugar Technologists Association, 45:169–176.

  • Wang, Q., Tenhunen, J., Quoc Dinh, N., Richstein, M., Vesala, T., Keronen, P., et al. (2004). Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland. Remote Sensing of Environment, 93, 225–237. https://doi.org/10.1016/j.rse.2004.07.006.

    Article  Google Scholar 

  • Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108, 290–310.

    Article  Google Scholar 

  • Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2008). Large area crop map** using timeseries MODIS 250 m NDVI data: An assessment of the U.S. Central Great Plains. Remote Sensing of Environment, 112, 1096–1116.

    Article  Google Scholar 

  • Win, S. K., Zamora, O. B., & Thein, S. (2014). Determination of the water requirement and kc values of sugarcane at different crop growth stages by lysimetric method. Sugar Tech, 16(3), ,286-294. https://doi.org/10.1007/s12355-013-0282-1.

    Article  Google Scholar 

  • Wooten, J. R., Akins, D. C., Thomasson, J. A., Shearer, S. A., & Pennington, D. A. (1999). Satellite imagery for crop stress and yield prediction: Cotton in Mississippi. Paper 991133. St. Joseph, MI: ASAE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Dingre.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dingre, S.K., Gorantiwar, S.D. & Kadam, S.A. Correlating the field water balance derived crop coefficient (Kc) and canopy reflectance-based NDVI for irrigated sugarcane. Precision Agric 22, 1134–1153 (2021). https://doi.org/10.1007/s11119-020-09774-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-020-09774-8

Keywords

Navigation