Log in

Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

This paper investigated the possibility of discriminating tomato yellow leaf curl disease by a hyperspectral imaging technique. A hyperspecral imaging system collected hyperspectral images of both healthy and infected tomato leaves. The reflectance spectra, first derivative reflectance spectra and absolute reflectance difference spectra in the wavelength range of 500–1000 nm of both background and the leaf area were analyzed to select sensitive wavelengths and band ratios. 853 nm was selected to create a mask image for background segmentation, while 720 nm from the reflectance spectra, four peaks (560, 575, 712, and 729 nm) from the first derivative spectra and, four wavelengths with higher values (586, 720 nm) and lower values (690, 840 nm) in the absolute difference spectra were selected as a set of sensitive wavelengths. Four band ratio images (560/575, 712/729, 586/690, and 720/840 nm) were compared with four widely used vegetation indices (VIs). 24 texture features were extracted using grey level co-occurrence matrix (GLCM), respectively. The performance of each feature was evaluated by receiver operator characteristic (ROC) curve analysis. The best threshold values of each feature were calculated by Yonden’s index. Mean value of correlation (COR_MEAN) extracted from the band ratio image (720/840 nm) had the best performance, whose AUC value was 1.0. The discrimination result for a validation set based on its best threshold value was 100%. This research also demonstrated that multispectral images at 560, 575 and 720 nm have a potential for detecting tomato yellow leaf curl virus infection in field applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Calderón, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231–245. doi:10.1016/j.rse.2013.07.031.

    Article  Google Scholar 

  • Chappelle, E. W., Moon, S. K., & McMurtrey, J. E., III. The red edge shift: An explanation of its relationship to stress and the concentration of chlorophyll A. In Geoscience and remote sensing symposium, 1991. IGARSS ‘91. Remote sensing: Global monitoring for earth management, International, 36 Jun 1991 (Vol. 4, pp. 2287–2290). doi:10.1109/IGARSS.1991.575500.

  • Gamon, J. A., Peñuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1), 35–44. doi:10.1016/0034-4257(92)90059-S.

    Article  Google Scholar 

  • García-Andrés, S., Accotto, G. P., Navas-Castillo, J., & Moriones, E. (2007). Founder effect, plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. Virology, 359(2), 302–312. doi:10.1016/j.virol.2006.09.030.

    Article  PubMed  Google Scholar 

  • Glick, E., Levy, Y., & Gafni, Y. (2009). The viral etiology of tomato yellow leaf curl disease-a review. Plant Protection Science, 45(3), 81–97.

    Article  CAS  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing. NJ: Prentice Hall Upper Saddle River.

    Google Scholar 

  • Grigorescu, S. E., Petkov, N., & Kruizinga, P. (2002). Comparison of texture features based on Gabor filters. Image Processing, IEEE Transactions on, 11(10), 1160–1167. doi:10.1109/TIP.2002.804262.

    Article  Google Scholar 

  • Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, 3(6), 610–621.

    Article  Google Scholar 

  • Hillnhütter, C., Mahlein, A.-K., Sikora, R. A., & Oerke, E.-C. (2012). Use of imaging spectroscopy to discriminate symptoms caused by Heterodera schachtii and Rhizoctonia solani on sugar beet. Precision Agriculture, 13(1), 17–32.

    Article  Google Scholar 

  • Huang, K.-Y. (2007). Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and Electronics in Agriculture, 57(1), 3–11.

    Article  Google Scholar 

  • Hunt, E. R., Rock, B. N., & Nobel, P. S. (1987). Measurement of leaf relative water content by infrared reflectance. Remote Sensing of Environment, 22(3), 429–435.

    Article  Google Scholar 

  • Jones, C., Jones, J., & Lee, W. (2010). Diagnosis of bacterial spot of tomato using spectral signatures. Computers and Electronics in Agriculture, 74(2), 329–335.

    Article  Google Scholar 

  • Liu, Z.-Y., Shi, J.-J., Zhang, L.-W., & Huang, J.-F. (2010). Discrimination of rice panicles by hyperspectral reflectance data based on principal component analysis and support vector classification. Journal of Zhejiang University Science B, 11(1), 71–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manjunath, B. S., & Ma, W.-Y. (1996). Texture features for browsing and retrieval of image data. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 18(8), 837–842.

    Article  Google Scholar 

  • Merton, R., & Huntington, J. Early simulation of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Summaries of the Eight JPL airborne earth science workshop, 1999 (Vol. 99, pp. 299–307, Vol. 17). JPL Publication Pasadena, CA.

  • Penuelas, J., Filella, I., Biel, C., Serrano, L., & Save, R. (1993). The reflectance at the 950–970 nm region as an indicator of plant water status. International Journal of Remote Sensing, 14(10), 1887–1905.

    Article  Google Scholar 

  • Polston, J., & Sherwood, T. (2003). Pymetrozine interferes with transmission ofTomato yellow leaf curl virus by the whiteflyBemisia tabaci. Phytoparasitica, 31(5), 490–498.

    Article  CAS  Google Scholar 

  • Razmjooy, N., Mousavi, B. S., & Soleymani, F. (2012). A real-time mathematical computer method for potato inspection using machine vision. Computers and Mathematics with Applications, 63(1), 268–279.

    Article  Google Scholar 

  • Sena, D., Jr., Pinto, F., Queiroz, D., & Viana, P. (2003). Fall armyworm damaged maize plant identification using digital images. Biosystems Engineering, 85(4), 449–454.

    Article  Google Scholar 

  • Srinivasan, R., Riley, D., Diffie, S., Sparks, A., & Adkins, S. (2012). Whitefly population dynamics and evaluation of whitefly-transmitted Tomato yellow leaf curl virus (TYLCV)-resistant tomato genotypes as whitefly and TYLCV reservoirs. Journal of Economic Entomology, 105(4), 1447–1456.

    Article  CAS  PubMed  Google Scholar 

  • Tellechea, M. L., Aranguren, F., Martínez-Larrad, M. T., Serrano-Ríos, M., Taverna, M. J., & Frechtel, G. D. (2009). Ability of lipid accumulation product to identify metabolic syndrome in healthy men from Buenos Aires. Diabetes Care, 32(7), e85.

    Article  PubMed  Google Scholar 

  • Thenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2), 158–182. doi:10.1016/S0034-4257(99)00067-X.

    Article  Google Scholar 

  • Unser, M., & Eden, M. (1989). Multiresolution feature extraction and selection for texture segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11(7), 717–728.

    Article  Google Scholar 

  • Wang, W., Li, C., Gitaitis, R., Tollner, E., Rains, G., & Yoon, S.-C. Near-infrared Hyperspectral Reflectance Imaging for Early Detection of Sour Skin Disease in Vidalia Sweet Onions. In ASABE Annual International Meeting, 2010 (Vol. 1009106). American Society of Agricultural and Biological Engineers, St. Joseph, Michigan Pittsburgh, Pennsylvania.

  • Wu, C.-M., Chen, Y.-C., & Hsieh, K.-S. (1992). Texture features for classification of ultrasonic liver images. Medical Imaging, IEEE Transactions on, 11(2), 141–152.

    Article  CAS  Google Scholar 

  • Wu, J. C., Martin, A. F., & Kacker, R. N. (2014). Bootstrap variability studies in ROC analysis on large datasets. Communications in Statistics-Simulation and Computation, 43(1), 225–236.

    Article  Google Scholar 

  • **ng, J., Symons, S., Shahin, M., & Hatcher, D. (2010). Detection of sprout damage in Canada Western Red Spring wheat with multiple wavebands using visible/near-infrared hyperspectral imaging. Biosystems Engineering, 106(2), 188–194.

    Article  Google Scholar 

  • Yang, S.-W., Lin, C.-S., Lin, S.-K., & Tseng, Y.-C. (2014). Automatic inspection system for defects of printed art tile based on texture feature analysis. Instrumentation Science and Technology, 42(1), 59–71.

    Article  CAS  Google Scholar 

  • Zhang, H., Gong, H., & Zhou, X. (2009). Molecular characterization and pathogenicity of tomato yellow leaf curl virus in China. Virus Genes, 39(2), 249–255.

    Article  PubMed  Google Scholar 

  • Zhang, J.-C., Pu, R.-L., Wang, J.-H., Huang, W.-J., Yuan, L., & Luo, J.-H. (2012). Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computers and Electronics in Agriculture, 85, 13–23.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Xue** Zhou for providing the tomato yellow citrus leaf virus. The Department of science and Technology of Sichuan province (2017JY0144) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **zhu Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Zhou, M., Gao, Y. et al. Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves. Precision Agric 19, 379–394 (2018). https://doi.org/10.1007/s11119-017-9524-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-017-9524-7

Keywords

Navigation