Log in

An Integration by Parts Formula for Functionals of the Dirichlet-Ferguson Measure, and Applications

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

The Dirichlet-Ferguson measure is a random probability measure that has seen widespread use in Bayesian nonparametrics. Our main results can be seen as a first step towards the development of a stochastic analysis of the Dirichlet-Ferguson measure. We define a gradient that acts on functionals of the measure and derive its adjoint. The corresponding integration by parts formula is used to prove a covariance representation formula for square integrable functionals of the Dirichlet-Ferguson measure and to provide a quantitative central limit theorem for the first chaos. Our findings are illustrated by a variety of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Blackwell, D., MacQueen, J.: Ferguson distribution via Pólya urn schemes. Ann. Stat. 1, 353–355 (1973)

    Article  MATH  Google Scholar 

  2. Chen, L.H.Y., Goldstein, L., Shao, Q.: Normal Approximation by Stein’S Method. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  3. Dello Schiavo, L., Lytvynov, E.: A Mecke-type characterization of the Dirichlet-Ferguson measure Preprint. ar**v:1706.07602v2 (2017)

  4. Donnelly, P., Grimmett, G.: On the asymptotic distribution of large prime factors. J. Lond. Math. Soc. 47, 395–404 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feng, S.: The Poisson-Dirichlet distribution and Related Topics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Ferguson, T.S.: A Bayesian analysis of some non-parametric problems. Ann. Stat. 1, 209–230 (1973)

    Article  MATH  Google Scholar 

  7. Fleming, V.H., Viot, M.: Some measure-valued Markov processes in population genetics theory. Indiana J. Math. 28, 817–843 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., Rubin, D.: Bayesian Data Analysis, 3rd edn. Chapman & Hall/CRC Texts in Statistical Science, London (2013)

    Book  MATH  Google Scholar 

  9. Handa, K.: Quasi-invariant measures and their characterization by conditional probabilities. Bull. Sci. Math. 125, 583–604 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Last, G., Penrose, M.: Lectures on the Poisson Process. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  11. Letac, G., Piccioni, M.: Dirichlet random walks. J. Appl. Probab. 51, 1081–1099 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lijoi, A., Regazzini, E.: Means of a Dirichlet process and multiple hypergeometric functions. Ann. Probab. 32, 1469–1495 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mecke, J.: Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrsch. verw. Gebiete 9, 36–58 (1967)

    Article  MATH  Google Scholar 

  14. Nguyen, T.D., Privault, N., Torrisi, G.L.: Gaussian estimates for the solutions of some one-dimensional stochastic equations. Potential Anal. 43, 289–311 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nourdin, I., Peccati, G.: Stein’s method on Wiener chaos. Probab. Theory Relat. Fields 145, 75–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nourdin, I., Peccati, G.: Normal approximations with Malliavin calculus. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  17. Nualart, D., Vives, J.: Anticipative Calculus for the Poisson Process Based on the Fock Space Séminaire de Probabilités XXIV, pp 154–165. Springer-Verlag, New York (1988)

    Google Scholar 

  18. Peccati, G.: Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. Ann. Probab. 32, 1796–1829 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peccati, G.: Multiple integral representation for functionals of Dirichlet processes. Bernoulli 14, 91–124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peccati, G., Solé, J. L., Taqqu, M.S., Utzet, F.: Stein’s method and normal approximation of Poisson functionals. Ann. Probab. 38, 443–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Picard, J.: Formules de dualité sur l’espace de Poisson. Ann. de l’I H. P. Sect. B 32(4), 509–548 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Privault, N.: Chaotic and variational calculus in discrete and continuous time for the poisson process. Stochast. Stochast. Rep. 51(1–2), 83–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Privault, N.: Stochastic Analysis in Discrete and Continuous Settings. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  24. Privault, N., Torrisi, G.L.: Probability approximation by Clark Ocone covariance representation. Electron. J. Probab. 18, 1–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Regazzini, E., Sazonov, V.V.: Approximation of laws of random probabilities by mixtures of Dirichlet distributions with applications to nonparametric Bayesian inference. Teor Veroyatnost. i Primenen. 45, 103–124 (2000)

    MATH  Google Scholar 

  26. Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4, 639–650 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Teh, Y., Jordan, M., Beal, M., Blei, D.: Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes. Advances in Neural Information Processing Systems 17 (NIPS 2004)

  28. Tsilevich, N., Vershik, A., Yor, M.: Distinguished properties of the gamma process and related topics. ar**v:math/0005287 [math.PR] (2000)

  29. Villani, C.: Optimal Transport. Old and New. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  30. Zhang, X.: Clark-ocone formula and variational representation for poisson functionals. Ann. Probab. 32(4), 606–529 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Wu, L.: A new modified logarithmic Sobolev for Poisson point processes and several applications. Probab. Theory Relat. Fields 118, 427–438 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees whose insights have helped improve an earlier draft of the manuscript. IF was supported by Australian Research Council Grant No DP190100613. GLT would like to acknowledge support for the project titled “Epidemics and Counting Structures in the Erdos-Renyi Random Graphs” from the Istituto Nazionale di Alta Matematica “Francesco Severi”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Flint.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flint, I., Torrisi, G.L. An Integration by Parts Formula for Functionals of the Dirichlet-Ferguson Measure, and Applications. Potential Anal 58, 703–730 (2023). https://doi.org/10.1007/s11118-021-09955-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09955-8

Keywords

Mathematics Subject Classification (2010)

Navigation