Log in

Mixed Sobolev-like inequalities in Lebesgue spaces of variable exponents and in Orlicz spaces

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

In this short article we show a particular version of the Hedberg inequality which can be used to derive, in a very simple manner, functional inequalities involving Sobolev and Besov spaces in the general setting of Lebesgue spaces of variable exponents and in the framework of Orlicz spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. i.e. in bounded domains.

  2. Polynomials are excluded here and this fact can be easily seen from the characterization (2.5) of Besov spaces.

References

  1. Almeida, A., Diening, L., Hästö, P.: Homogeneous variable exponent Besov and Triebel–Lizorkin spaces. Math. Nachr. 291, 1177–1190 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    Book  Google Scholar 

  3. Bergh, J., Lofstrom, J.: Interpolation Spaces, Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)

    MATH  Google Scholar 

  4. Brezis, H., Mironescu, P.: Gagliardo-Nirenberg inequalities and non-inequalities: the full story. Ann. l’Inst. Henri Poincaré Non Linear Anal. 35, 1355–1376 (2018)

    Article  MathSciNet  Google Scholar 

  5. Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable LP spaces. Rev. Mat. Iberoam. 23(3), 743–770 (2007)

    Article  MathSciNet  Google Scholar 

  6. Cianchi, A.: Strong and weakly inequalities for some classical operators in Orlicz spaces. J. Lond. Math. Soc. 60(1), 187–202 (1999)

    Article  Google Scholar 

  7. Cianchi, A.: Optimal Orlicz–Sobolev embeddings. Rev. Mat. Iberoam. 20(2), 427–474 (2004)

    Article  MathSciNet  Google Scholar 

  8. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  9. Deringoz, F., et al.: Generalized fractional maximal and integral operators on Orlicz and generalized Orlicz-Morrey spaces of the third kind. Positivity 23, 727–757 (2019)

    Article  MathSciNet  Google Scholar 

  10. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin (2011)

    Book  Google Scholar 

  11. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256(6), 1731–1768 (2009)

    Article  MathSciNet  Google Scholar 

  12. Gérard, P., Meyer, Y., Oru, F.: Inégalités de Sobolev Précisées. Séminaire sur les Equations aux Dérivées Partielles, 1996–1997, Exp. No. IV, École Polytech., Palaiseau

  13. Grafakos, L.: Classical and Modern Fourier Analysis. Prentice Hall, Hoboken (2004)

    MATH  Google Scholar 

  14. Hedberg, L.: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510 (1972)

    Article  MathSciNet  Google Scholar 

  15. Kokilashvili, V., Krbec, M.: Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific, Singapore (1991)

    Book  Google Scholar 

  16. Kolyada, V.I., Pérez Lázaro, F.J.: On Gagliardo–Nirenberg Type Inequalities. J. Fourier Anal. Appl. 20, 577–607 (2014)

    Article  MathSciNet  Google Scholar 

  17. Nakai, E.: Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)

    Article  MathSciNet  Google Scholar 

  18. Rafeiro, H., Samko, S.: Maximal operator with rough kernel in variable Musielak–Morrey–Orlicz type spaces, variable Herz spaces and grand variable Lebesgue spaces. Integr. Equ. Oper. Theory 89, 111–124 (2017)

    Article  MathSciNet  Google Scholar 

  19. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  20. Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)

    Google Scholar 

  21. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Chamorro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

An alternative proof of Theorem 2 relies in the characterization of the Lebesgue and Sobolev spaces of variable exponents using the Littlewood–Paley decomposition. In the classical setting, the representation of these spaces using dyadic blocs is well known (see the books [2, 13]). For spaces of variable exponents, this theory is given in [1], see also Chapter 12 of the book [10]. Let us point out that the identification of the spaces given by a Littlewood–Paley decomposition with the spaces used here (in the non-homogeneous case) is done in the article [11].

Let us briefly recall the Littlewood–Paley decomposition: consider \(\varphi \in {\mathcal {S}}({\mathbb {R}}^n, {\mathbb {R}})\) such that \({\widehat{\varphi }}(\xi )=1\) if \(|\xi |\le 1/2\) and \({\widehat{\varphi }}(\xi )=0\) if \(|\xi |>1\) and for \(j\in {\mathbb {Z}}\) define the function \(\varphi _j\) by the expression \(\varphi _j(x)=2^{-jn}\varphi (2^{-j}x)\). Consider the function \(\psi \) which is given by the formula \({\widehat{\psi }}(\xi )={\widehat{\varphi }}(\xi /2)-{\widehat{\varphi }}(\xi )\) and for all \(j\in {\mathbb {Z}}\) we set \({\widehat{\psi }}_j(\xi )={\widehat{\psi }}(2^{-j}\xi )={\widehat{\varphi }}_{j+1}(\xi )-{\widehat{\varphi }}_{j}(\xi )\), we have then

$$\begin{aligned} \sum _{j\in {\mathbb {Z}}}{\widehat{\psi }}_j(\xi )\equiv 1\quad \text{ for } \text{ all } \xi \ne 0. \end{aligned}$$

Now, for all \(j\in {\mathbb {Z}}\), the dyadic-bloc operator \(\Delta _j\) is defined by the formula \(\Delta _j(f)=f*\psi _j\) and we have the formula

$$\begin{aligned} f=\sum _{j\in {\mathbb {Z}}}\Delta _j(f), \end{aligned}$$

where the convergence of the sum must be considered in \({\mathcal {S}}'({\mathbb {R}}^n)\) modulo the polynomials \({\mathbb {C}}[X]\).

Now for \(p \in {\mathcal {P}}({\mathbb {R}}^n)\) such that \(1<p^-\le p^+<+\infty \) and for \(0<s<+\infty \), we have the following characterizations of variable exponents spaces: for all \(f\in {\mathcal {S}}'/{\mathbb {C}}[X]\) we have

$$\begin{aligned}&\Vert f\Vert _{L^{p(\cdot )}({\mathbb {R}}^n)}\simeq \left\| \left( \displaystyle {\sum _{j\in {\mathbb {Z}}}}|\Delta _{j}(f)(x)|^{2}\right) ^{\frac{1}{2}}\right\| _{L^{p(\cdot )}({\mathbb {R}}^n)}\text{ and } \quad \\&\quad \Vert f\Vert _{\dot{{\mathcal {W}}}^{s,p(\cdot )}({\mathbb {R}}^n)}\simeq \left\| \left( \displaystyle {\sum _{j\in {\mathbb {Z}}}}2^{2sj}|\Delta _{j}(f)(x)|^{2}\right) ^{\frac{1}{2}}\right\| _{L^{p(\cdot )}({\mathbb {R}}^n)}. \end{aligned}$$

Note that the spaces \(\dot{{\mathcal {W}}}^{s,p(\cdot )}({\mathbb {R}}^n)\) given above are defined modulo the polynomials and thus they are not equivalent to the spaces \({\dot{W}}^{s,p(\cdot )}({\mathbb {R}}^n)\) given in (2.4). However, in the framework of the Theorem 2, we are considering functions that also belong to the Besov space \({\dot{B}}^{-\beta ,\infty }_{\infty }({\mathbb {R}}^n)\), which can be characterized by the equivalent quantity

$$\begin{aligned} \Vert f\Vert _{{\dot{B}}^{-\beta ,\infty }_{\infty }({\mathbb {R}}^n)}\simeq \underset{j\in {\mathbb {Z}}}{\sup \;} 2^{-\beta j}\Vert \Delta _{j}(f)\Vert _{L^\infty ({\mathbb {R}}^n)}, \end{aligned}$$
(A.1)

and this fact allows us to avoid this unpleasant issue related to the different definitions of homogeneous spaces as we have the equivalence of spacesFootnote 2\({\dot{W}}^{s,p(\cdot )}\cap {\dot{B}}^{-\beta ,\infty }_{\infty }\simeq \dot{{\mathcal {W}}}^{s,p(\cdot )}\cap {\dot{B}}^{-\beta ,\infty }_{\infty }\).

With this short introduction, we can proof Theorem 2 using the tools related to the Littlewood–Paley decomposition. We start with the following interpolation result

Lemma A.1

Let \((a_{j})_{j\in {\mathbb {Z}}}\) be a sequence and set \(s=(1-\theta ) s_0+ \theta s_{1}\) with \(0<\theta < 1\) and \(s_0\ne s_{1}\). Then for all \(r,r_{1},r_{2}\in [1,+\infty ]\) we have the interpolation estimate:

$$\begin{aligned} \Vert 2^{js}a_{j}\Vert _{\ell ^{r}}\le C\Vert 2^{js_{0}}a_{j}\Vert _{\ell ^{r_{1}}}^{1-\theta }\Vert 2^{js_{1}}a_{j}\Vert _{\ell ^{r_{2}}}^{\theta }. \end{aligned}$$

See [3] for a proof of this interpolation inequality.

If we apply this lemma to the dyadic blocs \(\Delta _{j}(f)\) with \(s_1=(1-\theta )s+\theta (-\beta )\) and \(r=r_{1}=2\) and \(r_{2}=+\infty \), we obtain

$$\begin{aligned}&\left( \sum _{j\in {\mathbb {Z}}}2^{2s_1j}|\Delta _{j}(f)(x)|^{2}\right) ^{\frac{1}{2(1-\theta )}}\\&\quad \le C \left( \sum _{j\in {\mathbb {Z}}}2^{2sj}|\Delta _{j}(f)(x)|^{2}\right) ^{\frac{1}{2}} \left( \underset{j\in {\mathbb {Z}}}{\sup \;} 2^{-\beta j}|\Delta _{j}(f)(x)|\right) ^{\frac{\theta }{1-\theta }}\\&\quad \le C \left( \sum _{j\in {\mathbb {Z}}}2^{2sj}|\Delta _{j}(f)(x)|^{2}\right) ^{\frac{1}{2}}\Vert f\Vert _{{\dot{B}}^{-\beta ,\infty }_\infty ({\mathbb {R}}^n)}^{\frac{\theta }{1-\theta }}, \end{aligned}$$

where in the last line we used the characterization of the Besov space \({\dot{B}}^{-\beta ,\infty }_\infty ({\mathbb {R}}^n)\) in terms of the dyadic blocs given in (A.1). Now, we take the Luxemburg \(L^{p(\cdot )}\)-norm to get

$$\begin{aligned}&\left\| \left( \sum _{j\in {\mathbb {Z}}}2^{2s_1j}|\Delta _{j}(f)|^{2}\right) ^{\frac{1}{2} \frac{1}{1-\theta }}\right\| _{L^{p(\cdot )}({\mathbb {R}}^n)}\\&\quad \le C \left\| \left( \sum _{j\in {\mathbb {Z}}}2^{2sj}|\Delta _{j}(f)|^{2}\right) ^{\frac{1}{2}} \right\| _{L^{p(\cdot )}({\mathbb {R}}^n)}\Vert f\Vert _{{\dot{B}}^{-\beta ,\infty }_\infty ({\mathbb {R}}^n)}^{\frac{\theta }{1-\theta }}. \end{aligned}$$

Then, using the property (2.3) we obtain

$$\begin{aligned}&\left\| \left( \sum _{j\in {\mathbb {Z}}}2^{2s_1j}|\Delta _{j}(f)|^{2}\right) ^{\frac{1}{2} }\right\| _{L^{\frac{p(\cdot )}{1-\theta }}({\mathbb {R}}^n)}^{\frac{1}{1-\theta }}\\&\quad \le C \left\| \left( \sum _{j\in {\mathbb {Z}}}2^{2sj}|\Delta _{j}(f)|^{2}\right) ^{\frac{1}{2}} \right\| _{L^{p(\cdot )}({\mathbb {R}}^n)}\Vert f\Vert _{{\dot{B}}^{-\beta ,\infty }_\infty ({\mathbb {R}}^n)}^{\frac{\theta }{1-\theta }}. \end{aligned}$$

To finish, we recall that \(q(\cdot )=\frac{p(\cdot )}{1-\theta }\) and using the characterization of Sobolev spaces via the Littlewood–Paley theory we can write

$$\begin{aligned} \Vert f\Vert _{\dot{{\mathcal {W}}}^{s_1,q(\cdot )}({\mathbb {R}}^n)}\le C \Vert f\Vert _{\dot{{\mathcal {W}}}^{s,p(\cdot )}({\mathbb {R}}^n)}^{1-\theta }\Vert f\Vert _{{\dot{B}}^{-\beta ,\infty }_{\infty }({\mathbb {R}}^n)}^\theta . \end{aligned}$$

\(\square \)

Remark A.1

Let us note here that this second proof of the Sobolev-like estimates relies in the Littlewood–Paley theory which is available in the setting of Lebesgue spaces of variable exponent over the euclidean space \({\mathbb {R}}^n\). But this is not always the case if we consider general spaces over other spaces than \({\mathbb {R}}^n\). In this sense the first proof based in the modified Hedberg inequality (1.19) seems more robust and simple to display.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamorro, D. Mixed Sobolev-like inequalities in Lebesgue spaces of variable exponents and in Orlicz spaces. Positivity 26, 5 (2022). https://doi.org/10.1007/s11117-022-00882-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11117-022-00882-5

Keywords

Mathematics Subject Classification

Navigation