Log in

Sampling root-respired CO2 in-situ for 13C measurement

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Root-respired δ13CO2 can be useful for exploring plant carbon allocation and root respiratory fractionation as well as for partitioning soil-surface CO2 emissions into plant root and soil organic matter (SOM) sources, a necessary measure for calculating the contribution of heterotrophic respiration of soil carbon to net ecosystem exchange. Root CO2 is usually sampled from excised roots, however, excision alters respiration rate and isolates the root sample from aboveground plant processes.

Methods

To improve the integrity of root efflux δ13CO2 measurements, we designed a chamber for sampling root-respired CO2 in situ from minimally disturbed tree roots. We compared root δ13CO2 values from excised and attached roots in the field and we pruned mature Scots pine trees to induce a measureable change in root δ13CO2.

Results

Excised root samples containing root wounds gave more 13C-depleted measurements of root-respired δ13CO2 than intact roots by 1.8 ‰. Using chambers to sample CO2 from attached roots, we measured a diurnal change in root-respired δ13CO2 of 3–4 ‰, triggered by pruning foliage from the trees.

Conclusions

This chamber system permits high-frequency sampling of live root-respired δ13CO2 that enables greater insight into plant respiratory processes and more accurate partitioning of soil-surface CO2 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albanito F, McAllister JL, Cescatti A, Smith P, Robinson D (2012) Dual-chamber measurements of δ13C of soil-respired CO2 partitioned using a field-based three end-member model. Soil Biol Biochem 47:106–115

    Article  CAS  Google Scholar 

  • Bahn M, Schmitt M, Siegwolf R, Richter A, Brüggemann N (2009) Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol 182:451–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell JS (2012) The soils of the country around banchory, stonehaven and Forfar. The James Hutton Institute, Aberdeen

    Google Scholar 

  • Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40

    Article  CAS  PubMed  Google Scholar 

  • Brüggemann N, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Bahn M (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489

    Article  Google Scholar 

  • Buoma TJ, Nielsen KL, Eissenstat DM, Lynch JP (1997) Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content. Plant Soil 195:221–232

    Article  Google Scholar 

  • Burton AJ, Pregitzer KS (2002) Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field. Tree Physiol 22:67–72

    Article  PubMed  Google Scholar 

  • Chen D, Zhang Y, Lin Y, Chen H, Fu S (2009) Stand level estimation of root respiration for two subtropical plantations based on in situ measurement of specific root respiration. For Ecol Manag 257:2088–2097

    Article  Google Scholar 

  • Cheng W, Fu S, Susfalk RB, Mitchell RJ (2005) Measuring tree root respiration using 13C natural abundance: rooting medium matters. New Phytol 167:297–307

    Article  CAS  PubMed  Google Scholar 

  • Drake JE, Stoy PC, Jackson RB, DeLucia EH (2008) Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization. Plant Cell Environ 31:1663–1672

    Article  CAS  PubMed  Google Scholar 

  • Ekblad A, Högberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308

    Article  Google Scholar 

  • Ekblad A, Boström B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136–142

    Article  PubMed  Google Scholar 

  • European Commission (2005) Soil atlas of Europe and world reference base for soil resources. Eur. Soil Bur. Netw

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

  • Fu S, Zhou L, Shen J, Ding M, Zhang F, Huang H, Rao X, Lin Y, Shao Y, Zhang W (2008) A simplified system for measuring rhizosphere respiration of fine roots in situ. For Ecol Manag 255:3360–3364

    Article  Google Scholar 

  • Gavrichkova O, Proietti S, Moscatello S, Portarena S, Battistelli A, Matteucci G, Brugnoli E (2011) Short-term natural δ13C and δ18O variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2. Biogeosciences 8:2833–2846

    Article  CAS  Google Scholar 

  • Ghashghaie J, Badeck FW (2014) Opposite carbon isotope discrimination during dark respiration in leaves versus roots - a review. New Phytol 201:751–769

    Article  CAS  PubMed  Google Scholar 

  • Gleixner G, Danier H-J, Werner RA, Schmidt H-L (1993) Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing Basidiomycetes. Plant Physiol 102:1287–1290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glentworth R, Muir JW (1963) The soils of the country round Aberdeen, inverurie and fraserburgh. The Macaulay Institute for Soil Research, Aberdeen

    Google Scholar 

  • Gomez-Casanovas N, Matamala R, Cook DR, Gonzalez-Meler MA (2012) Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands. Glob Chang Biol 18:2532–2545

    Article  Google Scholar 

  • Göttlicher S, Knohl A, Wanek W, Buchmann N, Richter A (2006) Short-term changes in carbon isotope composition of soluble carbohydrates and starch: from canopy leaves to the root system. Rapid Commun Mass Spectrom 20:653–660

    Article  PubMed  Google Scholar 

  • Graham SL, Millard P, Hunt J, Rogers GND, Whitehead D (2012) Roots affect the response of heterotrophic soil respiration to temperature in tussock grass microcosms. Ann Bot 110:253–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinemeyer A, Di Bene C, Lloyd AR, Tortorella D, Baxter R, Huntley B, Gelsomino A, Ineson P (2011) Soil respiration: implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO2 efflux rates in three ecosystems. Eur J Soil Sci 62:82–94

    Article  CAS  Google Scholar 

  • Heinemeyer A, Tortorella D, Petrovicova B, Gelsomino A (2012) Partitioning of soil CO2 flux components in a temperate grassland ecosystem. Eur J Soil Sci 63:249–260

    Article  CAS  Google Scholar 

  • Hymus GJ, Maseyk K, Valentini R, Yakir D (2005) Large daily variation in 13C-enrichment of leaf-respired CO2 in two Quercus forest canopies. New Phytol 167:377–384

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) REVIEW: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16:3386–3406

    Article  Google Scholar 

  • Lipp CC, Andersen CP (2003) Role of carbohydrate supply in white and brown root respiration of ponderosa pine. New Phytol 160:523–531

    Article  Google Scholar 

  • Makita N, Yaku R, Ohashi M, Fukuda K, Ikeno H, Hirano Y (2013) Effects of excising and washing treatments on the root respiration rates of Japanese cedar (cryptomeria japonica) seedlings. J For Res 18:379–383

    Article  CAS  Google Scholar 

  • Marron N, Plain C, Longdoz B, Epron D (2009) Seasonal and daily time course of the 13C composition in soil CO2 efflux recorded with a tunable diode laser spectrophotometer (TDLS). Plant Soil 318:137–151

    Article  CAS  Google Scholar 

  • Marsden C, Nouvellon Y, Epron D (2008) Relating coarse root respiration to root diameter in clonal eucalyptus stands in the Republic of the Congo. Tree Physiol 28:1245–1254

    Article  CAS  PubMed  Google Scholar 

  • McDowell NG, Marshall JD, Qi J, Mattson K (1999) Direct inhibition of maintenance respiration in western hemlock roots exposed to ambient soil carbon dioxide concentrations. Tree Physiol 19:599–605

    Article  CAS  PubMed  Google Scholar 

  • Millard P, Midwood AJ, Hunt JE, Whitehead D, Boutton TW (2008) Partitioning soil surface CO2 efflux into autotrophic and heterotrophic components, using natural gradients in soil δ13C in an undisturbed savannah soil. Soil Biol Biochem 40:1575–1582

    Article  CAS  Google Scholar 

  • Millard P, Midwood AJ, Hunt JE, Barbour MM, Whitehead D (2010) Quantifying the contribution of soil organic matter turnover to forest soil respiration, using natural abundance δ13C. Soil Biol Biochem 42:935–943

    Article  CAS  Google Scholar 

  • Moyes AB, Gaines SJ, Siegwolf RTW, Bowling DR (2010) Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration. Plant Cell Environ 33:1804–1819

    Article  CAS  PubMed  Google Scholar 

  • Nickerson N, Risk D (2009) Physical controls on the isotopic composition of soil-respired CO2. J Geophys Res G Biogeosci. doi:10.1029/2008JG000766, 114

    Google Scholar 

  • Phillips CL, Nickerson N, Risk D, Kayler ZE, Andersen C, Mix A, Bond B (2010) Soil moisture effects on the carbon isotope composition of soil respiration. Rapid Commun Mass Spectrom 24:1271–1280

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Marshall JD, Mattson KG (1994) High soil carbon dioxide concentrations inhibit root respiration of Douglas Fir. New Phytol 128:435–442

    Article  Google Scholar 

  • Rakonczay Z, Seiler JR, Kelting DL (1997a) Carbon efflux rates of fine roots of three tree species decline shortly after excision. Environ Exp Bot 38:243–249

    Article  CAS  Google Scholar 

  • Rakonczay Z, Seiler JR, Samuelson LJ (1997b) A method for the in situ measurement of fine root gas exchange of forest trees. Environ Exp Bot 37:107–113

    Article  CAS  Google Scholar 

  • Risk D, Nickerson N, Phillips CL, Kellman L, Moroni M (2012) Drought alters respired δ13CO2 from autotrophic, but not heterotrophic soil respiration. Soil Biol Biochem 50:26–32

    Article  CAS  Google Scholar 

  • Snell HSK, Robinson D, Midwood AJ (2014) Minimising methodological biases to improve the accuracy of partitioning soil respiration using natural abundance 13C. Rapid Commun Mass Spectrom 28:2341–2351

    Article  CAS  PubMed  Google Scholar 

  • Söderström B, Read DJ (1987) Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilized soil. Soil Biol Biochem 19:231–236

    Article  Google Scholar 

  • Subke J-A, Vallack HW, Magnusson T, Keel SG, Metcalfe DB, Högberg P, Ineson P (2009) Short-term dynamics of abiotic and biotic soil 13CO2 effluxes after in situ 13CO2 pulse labelling of a boreal pine forest. New Phytol 183:349–357

    Article  CAS  PubMed  Google Scholar 

  • Subke J-A, Voke NR, Leronni V, Garnett MH, Ineson P (2011) Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling. J Ecol 99:186–193

    Article  Google Scholar 

  • Teskey RO, McGuire MA (2004) CO2 transported in xylem sap affects CO2 efflux from liquidambar styraciflua and Platanus occidentalis stems, and contributes to observed wound respiration phenomena. Trees 19:357–362

    Article  Google Scholar 

  • Unger S, Máguas C, Pereira JS, Aires LM, David TS, Werner C (2010) Disentangling drought-induced variation in ecosystem and soil respiration using stable carbon isotopes. Oecologia 163:1043–1057

    Article  PubMed  Google Scholar 

  • Wegener F, Beyschlag W, Werner C (2010) The magnitude of diurnal variation in carbon isotopic composition of leaf dark respired CO2 correlates with the difference between δ13C of leaf and root material. Funct Plant Biol 37:849–858

    Article  CAS  Google Scholar 

  • Werth M, Kuzyakov Y (2010) 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42:1372–1384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Alan Wilson for building the chambers and to Barry Thornton and staff for IRMS analysis. This project was funded by a NERC studentship for HS. We thank two anonymous reviewers whose comments greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen S. K. Snell.

Additional information

Responsible Editor: Per Ambus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snell, H.S.K., Robinson, D. & Midwood, A.J. Sampling root-respired CO2 in-situ for 13C measurement. Plant Soil 393, 259–271 (2015). https://doi.org/10.1007/s11104-015-2493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2493-6

Keywords

Navigation