Log in

Brassinosteroids: synthesis and biological activities

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) are a relatively recently discovered group of phytohormones that are essential for normal plant growth and development. They participate in regulation of numerous vital physiological processes in plants, such as elongation, germination, photomorphogenesis, immunity and reproductive organ development. Structurally they are very similar to animal steroid hormones and include about 70 polyhydroxylated sterol derivatives. They are found at low levels in practically all plant organs. Recent studies have indicated that BRs have antiproliferative, anticancer, antiangiogenic, antiviral and antibacterial properties in animal cell systems, and thus have potential medical applications. Among others, BRs can inhibit replication of viruses in confluent human cell cultures, sometimes with high selectivity indexes, inducing cytotoxic effects in various types of cancer cells but not normal human cells. Thus, they include promising leads for develo** potent new anticancer drugs. The aims of this article are to overview chemical characteristics, biological activities and the potential medical applications of natural BRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10

Similar content being viewed by others

References

  • Aburatani M, Takeuchi T, Mori K (1985) Structural revision of the acetal intermediates in brassinolide synthesis. Agric Biol Chem 49:3557–3562

    Article  CAS  Google Scholar 

  • Albrecht C, Boutrot F, Segonzac C, Schwessinger B et al (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. PNAS 109:303–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anastasia M, Allevi P, Ciuffreda P, Fiecchi A (1983) Stereoselective synthesis of crinosterol [(22E,24S)-Ergosta-5,22-dien-3β-ol]. J Chem Soc Perkin Trans 1:2365–2367

    Article  Google Scholar 

  • Arteca RN, Arteca JM (2008) Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J Exp Bot 59(11):3019–3026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bajguz A (2000) Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorea vulgaris. Plant Physiol Biochem 38:209–2015

    Article  CAS  Google Scholar 

  • Bajguz A (2002) Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J Plant Physiol 159:321–324

    Article  CAS  Google Scholar 

  • Bajguz A (2011) Brassinosteroids—occurence and chemical structures in plants. In: Hayat S, Ahmad A (eds) Brassinosteroids a class of plant hormone. Springer, London, pp 1–29

    Chapter  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochem 62:1027–1046

    Article  CAS  Google Scholar 

  • Belkhadir Y, Jaillais Y, Balsemao-Pires E, Dangl JL, Chory J (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. PNAS 109:297–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhardwaj R, Arora HK, Nagar PK, Thukral AK (2006) Brassinosteroids-A novel group of plant hormones. In: Trivedi PC (ed) Plant molecular physiology-current scenario and future projections. Aaviskar Publisher, Jaipur, pp 58–84

    Google Scholar 

  • Bhat TA, Singh RP (2008) Tumor angiogenesis—a potential target in cancer chemoprevention. Food Chem Toxicol 46(4):1334–1345

    Article  CAS  PubMed  Google Scholar 

  • Cano-Delgado A, Yin Y, Yu C, Vafeados D et al (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Xu Q, Cao Y, Qian K et al (2005) Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant 123:57–66

    Article  CAS  Google Scholar 

  • Carange J, Longpré F, Daoust B, Martinoli MG (2011) 24-Epibrassinolide, a phytosterol from the brassinosteroid family, protects dopaminergic cells against MPP-induced oxidative stress and apoptosis. J Toxicol 2011:392859

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chaiwanon J, Wang ZY (2015) Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol 25(8):1031–1042

    Article  CAS  PubMed  Google Scholar 

  • Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3:445–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clouse SD (2002) Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol Cell 10:973–982

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteriods: essential regulators of plant growth and development. Ann Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  Google Scholar 

  • Clouse SD, Hall AF, Langford M et al (1993) Physiological and molecular effects of brassinosteroids on Arabidopsis Thaliana. J Plant Growt Regul. 12:61–66

    Article  CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris T (1996) A brassinosteroid-insensitive mutant in Arabidopsis Thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 29:681–691

    Article  CAS  PubMed  Google Scholar 

  • Donaubauer JR, Greaves AM, McMorris TC (1984) A novel synthesis of brassinolide. J Org Chem 49:2834–2837

    Article  Google Scholar 

  • Fariduddin Q, Khanam S, Hasan S, Ali B et al (2009) Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant. 31:889–897

    Article  CAS  Google Scholar 

  • Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358

    Article  CAS  PubMed  Google Scholar 

  • Franek F, Eckschlager T, Kohout L (2003) 24-Epibrassinolide at subnanomolar concentrations modulates growth and production characteristics of a mouse hybridoma. Collect Czech Chem Commun 68:2190–2200

    Article  CAS  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Ann Rev Plant Biol 54:137–164

    Article  CAS  Google Scholar 

  • Fung S, Siddall JB (1980) Stereoselective synthesis of brassinolide: a plant growth promoting steroidal lactone. J Am Chem Soc 102:6580–6581

    Article  CAS  Google Scholar 

  • Goetz M, Godt DE, Roitsch T (2000) Tissue-specific induction of the mRNA for an extracelluar invertase isoenzyme of tomato by brassinosteroids suggest a role for steroid hormones in assimilate partitioning. Plant J 22:515–522

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez N, De Bodt S, Sulpice R et al (2010) Increased leaf size: different means to an end. Plant Phys 153:1261–1279

    Article  CAS  Google Scholar 

  • Gonzalez-Garcia MP, Vilarrasa-Blasi J, Thiponova M, Divol F, Mora-Garcia S, Russinova E, Cano-Delgado A (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138:849–859

    Article  CAS  PubMed  Google Scholar 

  • Grove MD, Spencer FG, Rohwedder WK, Mandava NB, Worley JF, Wrthen JD Jr, Cook JC Jr (1979) Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Guan M, Roddick J (1988) Epibrassinolide inhibition of development of excised, adventitious and intact roots of tomato: comparison with the effects of steroidal estrogens. Physiol Plant 74:720–726

    Article  CAS  Google Scholar 

  • Hacham Y, Holland N, Butterfield C, Chory J, Savaldi- Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hacham Y, Sela A, Friedlander L, Savaldi-Goldstein S (2012) BRI1 activity in the root meristem involves post-transcriptional regulation of PIN auxin efflux carriers. Plant Signal Behav 7:1–3

    Article  CAS  Google Scholar 

  • Hamdy AH, Aboutabl EA, Sameer S, Hussein AA, Díaz-Marrero AR, Darias J, Cueto M (2009) 3-Keto-22-epi-28-nor-cathasterone, a brassinosteroid-related metabolite from Cystoseira myrica. Steroids 74(12):927–930

    Article  CAS  PubMed  Google Scholar 

  • Hartmann MA (1998) Plant sterols and the membrane environment. Trends Plant Sci 3:170–175

    Article  Google Scholar 

  • Haubrick L, Assmann S (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Env. 29:446–457

    Article  CAS  Google Scholar 

  • Haubrick LL, Torsethaugen G, Assmann SM (2006) Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts. Phys Plantarum 128:134–143

    Article  CAS  Google Scholar 

  • Hayat S, Ahmad A (2003) Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in the field in India. Ann Appl Biol 143:121–124

    Article  CAS  Google Scholar 

  • Honda T, Keino K, Tsubuki M (1990) A concise stereoselective synthesis of castasterone. J Chem Soc Chem Commun 8:650–652

    Article  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y et al (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6-oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 32:495–508

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Schaffer R, West M, Wisman E (2003) Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J 34:125–134

    Article  CAS  PubMed  Google Scholar 

  • Huang LF, Zhou WS, Sun LQ, Pan XF (1993) Studies on steroidal plant-growth regulators. Part 29. Osmium tetroxide-catalysed asymmetric dihydroxylation of the (22E,24R)- and the (22E,24S)-24-alkyl steroidal unsaturated side chain. J Chem Soc Perkin Trans 1:1683–1686

    Article  Google Scholar 

  • Huang HY, Jiang WB, Hu YW, Wu P, Zhu JY, Liang WQ, Wang ZY, Lin WH (2013) BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. Mol Plant 6(2):456–469

    Article  CAS  PubMed  Google Scholar 

  • Hurski A, Zhabinskii V, Khripach V (2013) A short convergent synthesis of the side chains of brassinolide, cathasterone, and cryptolide. Tetrahedron Lett 54:584–586

    Article  CAS  Google Scholar 

  • Hurski AL, Ermolovich YV, Zhabinskii VN, Khripach VA (2015) The development and use of a general route to brassinolide, its biosynthetic precursors, metabolites and analogues. Org Biomol Chem 13:1446–1452

    Article  CAS  PubMed  Google Scholar 

  • Ibanes M, Fabregas N, Chory J, Cano-Delgado AI (2009) Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proc Natl Acad Sci USA 106:13612–13617

    Article  Google Scholar 

  • Ishiguro M, Takatsuto S, Morisaki M, Ikekawa N (1980) Synthesis of brassinolide, a steroidal lactone with plant-growth promoting activity. J Chem Soc Chem Commun 962–964

  • Iwasaki T, Shibaoka H (1991) Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cell. Plant Cell Physiol 32:1007–1014

    CAS  Google Scholar 

  • Janeczko A, Biesaga Koscielniak J, Dziurka M (2009) 24-Epibrassinolide modifies seed composition in soybean, oilseed rape and wheat. Seed Sci Technol. 37:625–639

    Article  Google Scholar 

  • Janeczko A, Biesaga-Koscielniak J, Oklestkova J et al (2010) Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci 196:311–321

    CAS  Google Scholar 

  • Jiang WB, Huang HY, Hu YW, Zhu SW et al (2013) Brassinosteroids regulates seed size and shape in Arabidopsis. Plant Phys. 162:1965–1977

    Article  CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis Thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kametani T, Keino K, Kigawa M, Tsubuki M, Honda T (1989) Stereocontroled synthesis of the brassinolide side chain via pyranone derivative. Tetrahedron Lett 30:3141–3142

    Article  CAS  Google Scholar 

  • Kang Y, Guo S, Li J, Duan J (2009) Effect of root 24-epibrassinolide on carbohydrate status and fermentative enzyme activities in cucumber (Cucumis sativum L.) seedlings under hypoxia. Plant Growth Regul 57:259–269

    Article  CAS  Google Scholar 

  • Katsumi M (1985) Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl sections. Plant Cell Physiol 26:615–626

    CAS  Google Scholar 

  • Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S et al (2007) The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol 17:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Kesisis G, Broxterman H, Giaccone G (2007) Angiogenesis inhibitors. drug selectivity and target specificity. Curr Pharm Des 13(27):2795–2809

    Article  CAS  PubMed  Google Scholar 

  • Kesy J, Trzaskalsky A, Galoh E, Kopcewicz J (2003) Inhibitory effect of brassinosetroids on the flowering of the short-day plant Pharbitis nil. Biol Plant 47:597–600

    Article  CAS  Google Scholar 

  • Khripach VA, Zhabinskii V, Ermolovich Y, Gulyakevich O, Mekhtiev A, Karalkin P (2012) Synthesis and biological activity of the probable biosynthetic precursors of 24(1)-norbrassinolide. Russ J Bioorg Chem 38:438–446

    Article  CAS  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Ann Rev Plant Biol 61:681–704

    Article  CAS  Google Scholar 

  • Kim SK, Chang SC, Lee EJ, Chung WS et al (2000) Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol 123:997–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kripach V, Zhabinskii V, De Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Krishna P (2003) Brassinosteriods- mediated stress responses. J Plant Growth Regul 22:289–297

    Article  CAS  PubMed  Google Scholar 

  • Kvasnica M, Oklestkova J, Bazgier V, Rarova L, Berka K, Strnad M (2014) Biological activities of new monohydroxylated brassinosteroid analogues with a carboxylic group in the side chain. Steroids 85:58–64

    Article  CAS  PubMed  Google Scholar 

  • Leubner-Metzger G (2001) Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213(5):758–763

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  • Li L, Van Staden J, Jäger AK (1998) Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul 25:81–87

    Article  CAS  Google Scholar 

  • Li J, Nam KH, Vafeados D, Chory J (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol 127:14–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Li Y, Chen S, An L (2010) Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Bot 61:4221–4230

    Article  CAS  PubMed  Google Scholar 

  • Losel R, Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4(1):46–56

    Article  PubMed  CAS  Google Scholar 

  • Malíková J, Swaczynová J, Kolář Z, Strnad M (2008) Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry 69(2):418–426

    Article  PubMed  CAS  Google Scholar 

  • Mandava N, Mitchell JW (1971) New plant hormones: chemical and biological investigations. Indian Agr 15:19–31

    CAS  Google Scholar 

  • McMorris TC, Patil PA (1993) Improved synthesis of 24-epibrassinolide from ergosterol. J Org Chem 58:2338–2339

    Article  CAS  Google Scholar 

  • McMorris TC, Patil PA, Chavez RG, Baker ME, Clouse SD (1994) Synthesis and biological activity of 24-homobrassinolide and analogues. Phytochemistry 36:585–589

    Article  CAS  Google Scholar 

  • McMorris TC, Chavez RG, Patil PA (1996) Improved synthesis of brassinolide. J Chem Soc Perkin Trans 1:295–302

    Article  Google Scholar 

  • Michelini FM, Ramirez JA, Berra A, Galagovsky LR, Alche LE (2004) In vitro and in vivo antiherpetic activity of three new synthetic brassinosteroid analogues. Steroids 69:713–720

    Article  CAS  PubMed  Google Scholar 

  • Michelini FM, Berra A, Alché LE (2008) The in vitro immunomodulatory activity of a synthetic brassinosteroid analogue would account for the improvement of herpetic stromal keratitis in mice. J Ster Biochem Mol Biol 108:164–170

    Article  CAS  Google Scholar 

  • Michelini FM, Zorrilla P, Robello C, Alché LE (2013) Immunomodulatory activity of an anti-HSV-1 synthetic stigmastane analog. Bioorg Med Chem 21(2):560–568

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JW, Mandava N, Worley JF, Plimmer JR, Smith MV (1970) Brassins a new family of plant hormones from rape pollen. Nature 225:1065–1066

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JW, Mandava N, Worley JF, Drowne ME (1971) Fatty hormones in pollen and immature seeds of bean. J Agric Food Chem 19:391–393

    Article  CAS  Google Scholar 

  • Mori K, Sakakibara M, Okada K (1984) Synthesis of naturally occurring brassinosteroids employing cleavage of 23,34-epoxides as key reactions. Synthesis of brassinolide, castasterone, dolicholide, dolichosterone, homodolicholide, homodolichosterone, 6-deoxocastasterone and 6-deoxodolichosterone. Tetrahedron 40:1767–1781

    Article  CAS  Google Scholar 

  • Müssig C (2005) Brassinosteroid-promoted growth. Plant Biol. 7:110–117

    Article  PubMed  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S et al (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33:887–898

    Article  CAS  PubMed  Google Scholar 

  • Nakaya M, Tsukaya H, Murakami N, Kato M (2002) Brassinosteroids control the proliferation of leaf cells of Arabidopsis Thaliana. Plant Cell Physiol 43:239–244

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Sato T, Bishop GJ, Kamiya Y, Yokota T (2001) Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry 57:171–178

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Jager C, Kitasaka Y, Takeuchi K et al (2004) Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in the lk mutant of pea. Plant Physiol 135:2220–2229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nomura T, Ueno M, Yamada Y, Takatsuto S et al (2007) Roles of brassinosteroids and related m RNAs in pea seed growth and germination. Plant Physiol 143:1680–1688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Obakan P, Arisan ED, Calcabrini A, Agostinelli E, Bolkent S, Palavan-Unsal N (2014a) Activation of polyamine catabolic enzymes involved in diverse responses against epibrassinolide-induced apoptosis in LNCaP and DU145 prostate cancer cell lines. Amino Acids 46(3):553–564

    Article  CAS  PubMed  Google Scholar 

  • Obakan P, Arisan ED, Coker-Gurkan A, Palavan-Unsal N (2014b) Epibrassinolide-induced apoptosis regardless of p53 expression via activating polyamine catabolic machinery, a common target for androgen sensitive and insensitive prostate cancer cells. Prostate 74(16):1622–1633

    Article  CAS  PubMed  Google Scholar 

  • Oh MH, Sun J, Oh DH, Zielinski RE, Clouse SD, Huber SC (2011) Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Physiol 157:120–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohnishi T, Szatmari AM, Watanabe B, Fujita S et al (2006) C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18:3275–3288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ono E, Orika E, Nakamura T et al (2000) Application of brassinosteroid to Tabebuia alba (Bignoniaceae) plants. Rev Brasil Fisiol Vegetal 12:187–194

    CAS  Google Scholar 

  • Parl FF (2000) Estrogens, estrogen receptor and breast cancer. In: Biomedical and health research. IOS Press, Amsterdam

  • Pietras RJ, Weinberg OK (2005) Antiangiogenic steroids in human cancer therapy. Evid Based Complement Alternat Med 2(1):49–57

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramírez JA, Teme Centurión OM, Gros EG, Galagovsky LR (2000) Synthesis and bioactivity evaluation of brassinosteroid analogs. Steroids 65:329–337

    Article  PubMed  Google Scholar 

  • Rárová L, Zahler S, Liebl J, Kryštof V, Sedlák D, Bartůněk P, Strnad M (2012) Brassinosteroids inhibit in vitro angiogenesis in human endothelial cells. Steroids 77:1502–1509

    Article  PubMed  CAS  Google Scholar 

  • Roddick JG, Ikekawa N (1992) Modification of root and shoot development in monocotyledon and dicotyledon seedlings by 24-epibrassinolide. J Plant Physiol 140:70–74

    Article  CAS  Google Scholar 

  • Sairam RK (1994) Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of wheat variety. Plant Growth Regul 14(2):173–181

    Article  CAS  Google Scholar 

  • Sakakibara M, Mori K (1982) Facile synthesis of (22R,23R)-homobrassinolide. Agric Biol Chem 46:2769–2779

    Article  CAS  Google Scholar 

  • Sakakibara M, Mori K (1983) Improved synthesis of brassinolide. Agric Biol Chem 47:663–664

    Article  CAS  Google Scholar 

  • Sakakibara M, Okada K, Ichikawa Y, Mori K (1982) Synthesis of brassinolide, a plant growth promoting steroidal lactone. Heterocycles 17:301–304

    Article  CAS  Google Scholar 

  • Sasse JM (2003) Physiological actions of Brassinosteroids: an update. J Plant Growth Regul 22(4):276–288

    Article  CAS  PubMed  Google Scholar 

  • Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446:199–202

    Article  CAS  PubMed  Google Scholar 

  • Shahin SA, Sunil Kumar GB, Khan M, Doohan FM (2013) Brassinosteroid Enhances resistance to fusarium diseases of barley. Phytopathology 103:1260–1267

    Article  CAS  Google Scholar 

  • Shen ZW, Zhou WS (1990) Study on the syntheses of brassinolide and related compounds. Part 14. Highly stereoselective construction of the side-chain of brassinosteroids utilizing the β-Alkylative 1,3-carbonyl transposition of the steroidal 22-En-24-one. J Chem Soc Perkin Trans 1:1765–1767

    Google Scholar 

  • Singh AP, Savaldi-Goldstein S (2015) Growth control: brassinosteroid activity gets context. J Exp Botany 66:1123–1132

    Article  CAS  Google Scholar 

  • Steigerová J, Oklešťková J, Levková M, Rárová L, Kolář Z, Strnad M (2010) Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells. Chem Biol Interact 5:487–496

    Article  CAS  Google Scholar 

  • Steigerová J, Rárová L, Oklešťková J, Křížová K, Levková M, Šváchová M, Kolář Z, Strnad M (2012) Mechanisms of natural brassinosteroid-induced apoptosis of prostate cancer cells. Food Chem Toxicol 50:4068–4076

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Chen D, Li X, Qiao S, Shi C, Li C, Shen H, Wang X (2015) Brassinosteroid signaling regulates leaf erectness in oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell 34(2):220–228

    Article  CAS  PubMed  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szekeres M, Nemeth K, Knocz-Kalman Z et al (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  CAS  PubMed  Google Scholar 

  • Takatsuto S, Ikekawa N (1984) Short-step synthesis of plant growth-promoting brassinosteroids. Chem Pharm Bull 32:2001–2004

    Article  CAS  Google Scholar 

  • Takatsuto S, Yazawa N, Ishiguro M, Morisaki M, Ikekawa N (1984) Stereoselective synthesis of plant growth-promoting steroids, brassinolide, castasterone, typhasterol, and their 28-Nor analogues. J Chem Soc Perkin Trans 1:139–146

    Article  Google Scholar 

  • Takeuchi Y, Omigawa Y, Ogasawara M, Yoneyama K et al (1995) Effects of brassinosteroids on conditioning and germination of clover broomrape seeds. Plan Growth Regul 16:153–160

    Article  CAS  Google Scholar 

  • Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul 22:259–271

    Article  CAS  Google Scholar 

  • Thompson MJ, Mandava N, Flippen-Anderson JL, Worley JF, Dutky SR, Robbins WE, Lusby W (1979) Synthesis of brassino steroids: new plant-growth-promoting steroids. J Org Chem 44:5002–5004

    Article  CAS  Google Scholar 

  • Tong H, **ao Y, Liu D, Gao S, Liu L, Yin Y, ** Y, Qian Q, Chu C (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26(11):4376–4393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsubuki M, Keino K, Honda T (1992) Stereoselective Synthesis of plant-growth-regulating steroids: brassinolide, castasterone, and their 24,25-substituted analogues. J Chem Soc Perkin Trans 1:2643–2649

    Article  Google Scholar 

  • Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27(8):2261–2272

    Article  PubMed  CAS  Google Scholar 

  • Vardhini BV, Rao SSR (2002) Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 61:843–847

    Article  Google Scholar 

  • Vogler F, Schmalzl C, Englhart M, Bircheneder M, Sprunck S (2014) Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod 27(3):153–167

  • Vragović K, Sela A, Friedlander-Shani L, Fridman Y, Hacham Y, Holland N, Bartom E, Mockler TC, Savaldi-Goldstein S (2015) Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation. Proc Natl Acad Sci U S A 112(3):923–928

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24(3):842–857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wachsman MB, Castilla V (2012) Antiviral properties of brassinosteroids. In: Pereira-Netto AB (ed) Brassinosteroids: practical applications in agriculture and human health. Bentham Science Publishers, Sharjah, pp 57–71

    Google Scholar 

  • Wachsman MB, Lopez EMF, Ramirez JA, Galagovsky LR, Coto CE (2000) Antiviral effect of brassinosteroids against herpes virus and arenaviruses. Antivir Chem Chemother 11:71–77

    Article  CAS  PubMed  Google Scholar 

  • Wachsman MB, Ramirez JA, Galagovsky LR, Cotto CE (2002) Antiviral activity of brassinosteriods derivatives against measles virus in cell cultures. Antiviral Chem Chemother 13:61–66

    Article  CAS  Google Scholar 

  • Wachsman MB, Castilla V, Talarico LB, Ramirez JA, Galagovsky LR, Coto CE (2004) Antiherpetic mode of action of (22S,23S)-3beta-bromo-5alpha,22,23-trihydroxystigmastan-6-one in vitro. Int J Antimicrob Agents 23(5):524–526

  • Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383

    Article  CAS  PubMed  Google Scholar 

  • Wu YD, Lou YJ (2007) Brassinolide, a plant sterol from pollen of Brassica napus L., induces apoptosis in human prostate cancer PC-3 cells. Pharmazie 62:392–395

    CAS  PubMed  Google Scholar 

  • Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 2008:2130–2145

    Article  CAS  Google Scholar 

  • Yamaguchi T, Wakizuka T, Hirai K, Fujii S, Fujita A (1987) Stimulation of germination in aged rice seeds by pretreatment with brassinolide. Proc Plant Growth regul Soc Am 14:26–27

    Google Scholar 

  • Yamamato R, Demura T, Fujuda H (1997) Brassinosteroid induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol 38:980–983

    Article  Google Scholar 

  • Yang CJ, Zhang C, Lu YN, ** JQ, Wang XL (2011) The mechanisms of brassinosteroids action: from signal transduction to plant development. Mol Plant 4:588–600

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci 107(13):6100–6105

  • Yokota T, Sato T, Takeuchi Y, Nomura T et al (2001) Roots and shoots of tomato produce 6-deoxo-28norcathasterone, 6-deoxo-28-nortyphasterole and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochem. 58:233–238

    Article  CAS  Google Scholar 

  • Zhang DW, Deng XG, Fu FQ, Lin HH (2015) Induction of plant virus defense response by brassinosteroids and brassinosteroid signalling in Arabidopsis Thaliana. Planta 241:875–885

    Article  CAS  PubMed  Google Scholar 

  • Zhiponova MK, Vanhoutte I, Bouldof V et al (2013) Brassinosteroid production and signalling differentially control cell division and expansion in the leaf. New Phytol 197:490–502

    Article  CAS  PubMed  Google Scholar 

  • Zhou WS, Shen ZW (1991) Study on the synthesis of brassinolide and related compounds. Part 15. Formal synthesis of brassinolide via stereoselective sulphenate-sulphoxide transformation. J Chem Soc Perkin Trans 1:2827–2830

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Education, Youth and Sports of the Czech Republic—NPU I program with project LO1204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Oklestkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oklestkova, J., Rárová, L., Kvasnica, M. et al. Brassinosteroids: synthesis and biological activities. Phytochem Rev 14, 1053–1072 (2015). https://doi.org/10.1007/s11101-015-9446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9446-9

Keywords

Navigation