Log in

A survey of FDA Approved Monoclonal Antibodies and Fc-fusion Proteins for Manufacturing Changes and Comparability Assessment

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Objective

Manufacturing changes occur commonly throughout stages of biologics development and may result in product quality attribute changes. As changes in critical quality attributes have the potential to affect clinical safety and efficacy of products, it is imperative to ensure the quality and clinical performance before introducing the after-change products. Thus, we embarked on this project to understand what data have supported the manufacturing changes for licensed products with pre- and post-approval changes.

Methods

We surveyed the manufacturing changes of 85 monoclonal antibodies and 10 Fc fusion proteins approved by the Food and Drug Administration as of December 25, 2021. After collecting the type and timing of changes for these products, we investigated the approaches that provided supporting data for the changes. The source documents included reports submitted by applicants and FDA’s regulatory reviews.

Results

Analytical comparability was assessed to support all identified manufacturing changes. Supporting clinical data were available in 92% of these manufacturing changes; including data from pharmacokinetic comparability studies alone (3%), other studies on efficacy or safety (70%) and a combination of both (19%). Clinical pharmacokinetic comparability data contributed to supporting substantial changes, such as host cell type or master cell bank changes, concentration or formulation changes, and changes from pre-filled syringes to autoinjectors, especially when introduced after completing pivotal studies.

Conclusion

Our comprehensive retrospective analysis provides an understanding of the regulatory experience and industry practice, which could facilitate develo** appropriate comparability approaches to support manufacturing changes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to generate Fig. 1, Fig. 2, and Table III are available in Supplemental Table S2. The source data of Supplemental Table S2 and all the other figures and tables are composed in part of proprietary information in the regulatory submissions and in part of publicly available information in the following two sources:

• Purple Book Database of Licensed Biological Products (https://purplebooksearch.fda.gov/)

• Labels and reviews in the citation retrievable at Drugs@FDA (https://www.accessdata.fda.gov/scripts/cder/daf/)

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

AI:

Autoinjector

BE:

Bioequivalence

BLA:

Biological license application

CI:

Confidence interval

CMC:

Chemistry, Manufacturing, and Controls

CQA:

Critical quality attributes

DS:

Drug substance

DP:

Drug product

EMA:

European Medicines Agency

FDA:

Food and Drug Administration

GMR:

Geometric mean ratios

ICH:

International Conference on Harmonisation

IV:

Intravenous

pI :

Isoelectric point

MCB:

Master cell bank

FcRn:

Neonatal Fc receptor

PK:

Pharmacokinetics

PD:

Pharmacodynamics

PFS:

Prefilled syringe

SC:

Subcutaneous

sBLA:

Supplemental BLA

WCB:

Working cell bank

WHO:

World Health Organization

References

  1. FDA. Guidance on Q11 Development and Manufacture of Drug Substances 2012 [Available from: https://www.fda.gov/media/80909/download.

  2. Vezer B, Buzas Z, Sebeszta M, Zrubka Z. Authorized manufacturing changes for therapeutic monoclonal antibodies (mAbs) in European Public Assessment Report (EPAR) documents. Curr Med Res Opin. 2016;32(5):829–34.

    Article  CAS  PubMed  Google Scholar 

  3. Tripathi NK, Shrivastava A. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front Bioeng Biotechnol. 2019;7:420.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goh JB, Ng SK. Impact of host cell line choice on glycan profile. Crit Rev Biotechnol. 2018;38(6):851–67.

    Article  CAS  PubMed  Google Scholar 

  5. Restelli V, Wang MD, Huzel N, Ethier M, Perreault H, Butler M. The effect of dissolved oxygen on the production and the glycosylation profile of recombinant human erythropoietin produced from CHO cells. Biotechnol Bioeng. 2006;94(3):481–94.

    Article  CAS  PubMed  Google Scholar 

  6. Yang M, Butler M. Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng. 2000;68(4):370–80.

    Article  CAS  PubMed  Google Scholar 

  7. Muthing J, Kemminer SE, Conradt HS, Sagi D, Nimtz M, Karst U, et al. Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24. Biotechnol Bioeng. 2003;83(3):321–34.

    Article  PubMed  Google Scholar 

  8. Lipscomb ML, Palomares LA, Hernandez V, Ramirez OT, Kompala DS. Effect of production method and gene amplification on the glycosylation pattern of a secreted reporter protein in CHO cells. Biotechnol Prog. 2005;21(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  9. Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, et al. Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng. 2006;94(6):1033–44.

    Article  CAS  PubMed  Google Scholar 

  10. Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, et al. Process parameter shifting: Part II. Biphasic cultivation-A tool for enhancing the volumetric productivity of batch processes using Epo-Fc expressing CHO cells. Biotechnol Bioeng. 2006;94(6):1045–52.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng J, Yu H, Lau K, Huang S, Chokhawala HA, Li Y, et al. Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology. 2008;18(9):686–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delobel A. Glycosylation of therapeutic proteins: a critical quality attribute. Methods Mol Biol. 2021;2271:1–21.

    Article  CAS  PubMed  Google Scholar 

  13. Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, et al. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology. 2007;17(1):104–18.

    Article  CAS  PubMed  Google Scholar 

  14. Peipp M, Lammerts van Bueren JJ, Schneider-Merck T, Bleeker WW, Dechant M, Beyer T, et al. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood. 2008;112(6):2390–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrara C, Stuart F, Sondermann P, Brunker P, Umana P. The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem. 2006;281(8):5032–6.

    Article  CAS  PubMed  Google Scholar 

  16. Putnam WS, Prabhu S, Zheng Y, Subramanyam M, Wang YM. Pharmacokinetic, pharmacodynamic and immunogenicity comparability assessment strategies for monoclonal antibodies. Trends Biotechnol. 2010;28(10):509–16.

    Article  CAS  PubMed  Google Scholar 

  17. Lee JF, Litten JB, Grampp G. Comparability and biosimilarity: considerations for the healthcare provider. Curr Med Res Opin. 2012;28(6):1053–8.

    Article  CAS  PubMed  Google Scholar 

  18. EMA. ICH Topic Q 5 E Comparability of Biotechnological/Biological Products. 2005. Available from https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-5-e-comparability-biotechnological/biological-products-step-5_en.pdf. Accessed 20 Apr 2022

  19. EMA. Guideline on comparability of biotechnology-derived medicinal products after a change in the manufacturing process. Non-clinical and clinical issues. 2007. Available from https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-comparability-biotechnology-derived-medicinal-products-after-change-manufacturing-process_en.pdf.  Accessed 20 Apr 2022

  20. FDA. Demonstration of Comparability of Human Biological Products, Including Therapeutic Biotechnology-derived Products. 1996. Accessed June 1 2022. [Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/demonstration-comparability-human-biological-products-including-therapeutic-biotechnology-derived.

  21. FDA. Guidance on Q5E Comparability of Biotechnological/Biological Products Subject to Changes in Their Manufacturing Process. 2005 [Available from: https://www.fda.gov/media/71489/download.

  22. FDA. Guidance on Q5E Comparability of Biotechnological/Biological Products Subject to Changes in Their Manufacturing Proces. 2005 [Available from: https://www.fda.gov/media/71489/download.

  23. FDA. Comparability Protocols for Postapproval Changes to the Chemistry, Manufacturing, and Controls Information in an NDA, ANDA, or BLA 2022 [Available from: https://www.fda.gov/media/162263/download.

  24. Purple Book Database of Licensed Biological Products [Internet]. Accessed Dec 26 2021. Available from: https://purplebooksearch.fda.gov/.

  25. WHO. Guidelines on procedures and data requirements for changes to approved biotherapeutic products, Annex 3, TRS No 1011 2018. Accessed Apr 20 2022. [Available from: https://www.who.int/publications/m/item/approved-biotherapeutics-a3-trs-no-1011.

  26. ICH. Q5D Guideline on Derivation and Characterisation of Cell Substrates Used for Production of Biotechnological/Biological Products. 1997. Accessed Apr 20 2022. [Available from: https://database.ich.org/sites/default/files/Q5D%20Guideline.pdf.

  27. Rao VA, Kim JJ, Patel DS, Rains K, Estoll CR. A comprehensive scientific survey of excipients used in currently marketed, therapeutic biological drug products. Pharm Res. 2020;37(10):200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. EMA. Requirements for quality documentation concerning biological investigational medicinal products in clinical trials 2021. Accessed Apr 20 2022. [Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-requirements-quality-documentation-concerning-biological-investigational-medicinal_en-2.pdf.

  29. FDA. Changes to an Approved Application for Specified Biotechnology and Specified Synthetic Biological Products 1997 [Available from: https://www.fda.gov/media/75318/download.

  30. FDA. CMC Postapproval Manufacturing Changes for Specified Biological Products To Be Documented in Annual Reports 2021 [Available from: https://www.fda.gov/media/106935/download.

  31. Brooks SA. Appropriate glycosylation of recombinant proteins for human use: implications of choice of expression system. Mol Biotechnol. 2004;28(3):241–55.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Q, Qiu H. The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. J Pharm Sci. 2019;108(4):1366–77.

    Article  CAS  PubMed  Google Scholar 

  33. Steinke JW, Platts-Mills TA, Commins SP. The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immunol. 2015;135(3):589–96 (quiz 97).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilson JM, Platts-Mills TAE. IgE to galactose-alpha-1,3-galactose and the alpha-Gal syndrome: Insights from basophil activation testing. J Allergy Clin Immunol. 2019;143(1):101–3.

    Article  CAS  PubMed  Google Scholar 

  35. Macher BA, Galili U. The Galalpha 1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta. 2008;1780(2):75–88.

    Article  CAS  PubMed  Google Scholar 

  36. Kawanishi T. Regulatory perspectives from Japan - comparability of biopharmaceuticals. Biologicals. 2006;34(1):65–8.

    Article  CAS  PubMed  Google Scholar 

  37. Li W, Prabakaran P, Chen W, Zhu Z, Feng Y, Dimitrov DS. Antibody Aggregation: Insights from Sequence and Structure. Antibodies (Basel). 2016;5(3):19. https://doi.org/10.3390/antib5030019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11(2):99–109.

    Article  CAS  PubMed  Google Scholar 

  39. Lee HJ, Pardridge WM. Monoclonal antibody radiopharmaceuticals: cationization, pegylation, radiometal chelation, pharmacokinetics, and tumor imaging. Bioconjug Chem. 2003;14(3):546–53.

    Article  CAS  PubMed  Google Scholar 

  40. Khawli LA, Glasky MS, Alauddin MM, Epstein AL. Improved tumor localization and radioimaging with chemically modified monoclonal antibodies. Cancer Biother Radiopharm. 1996;11(3):203–15.

    CAS  PubMed  Google Scholar 

  41. Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel. 2010;23(5):385–92.

    Article  CAS  PubMed  Google Scholar 

  42. Usach I, Martinez R, Festini T, Peris JE. Subcutaneous injection of drugs: literature review of factors influencing pain sensation at the injection site. Adv Ther. 2019;36(11):2986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nash P, Vanhoof J, Hall S, Arulmani U, Tarzynski-Potempa R, Unnebrink K, et al. Randomized crossover comparison of injection site pain with 40 mg/04 or 08 mL formulations of adalimumab in patients with rheumatoid arthritis. Rheumatol Ther. 2016;3(2):257–70.

    Article  PubMed  PubMed Central  Google Scholar 

  44. FDA. Food and Drug Administration Approval Information. Adalimumab Product Approval Information – Licensing Action 12/31/02. 2002 [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2002/adalabb123102LB.htm.

  45. FDA. Summary Review for Regulatory Action. Humira 100 mg/mL, 40mg/0.4 mL PFS 2015 [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/125057Orig1s394SumR.pdf.

  46. Zijlstra E, Jahnke J, Fischer A, Kapitza C, Forst T. Impact of injection speed, volume, and site on pain sensation. J Diabetes Sci Technol. 2018;12(1):163–8.

    Article  PubMed  Google Scholar 

  47. Rao G, Iyer V, Kosloski MP, Pisal DS, Shin E, Middaugh CR, et al. Use of a folding model and in situ spectroscopic techniques for rational formulation development and stability testing of monoclonal antibody therapeutics. J Pharm Sci. 2010;99(4):1697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Turner MR, Balu-Iyer SV. Challenges and opportunities for the subcutaneous delivery of therapeutic proteins. J Pharm Sci. 2018;107(5):1247–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fang L, Shi GH, Richard CA, Dong X, Thomas JC, Victor MC, et al. Drug formulation impact on prefilled syringe functionality and autoinjector performance. PDA J Pharm Sci Technol. 2020;74(6):674–87.

    Article  CAS  PubMed  Google Scholar 

  50. Hu P, Wang J, Florian J, Shatzer K, Stevens AM, Gertz J, et al. Systematic review of device parameters and design of studies bridging biologic-device combination products using prefilled syringes and autoinjectors. AAPS J. 2020;22(2):52.

    Article  CAS  PubMed  Google Scholar 

  51. FDA. Bridging for Drug-Device and Biologic-Device Combination Products. Draft Guidance for Industry. 2019 [Available from: https://www.fda.gov/media/133676/download.

  52. Gibney MA, Arce CH, Byron KJ, Hirsch LJ. Skin and subcutaneous adipose layer thickness in adults with diabetes at sites used for insulin injections: implications for needle length recommendations. Curr Med Res Opin. 2010;26(6):1519–30.

    Article  CAS  PubMed  Google Scholar 

  53. FDA. Guidance for Industry: Questions and Answers on Biosimilar Development and the BPCI Act (Revision 1, December 2018) 2018 [Available from: https://www.fda.gov/media/119258/download.

  54. ICH. Comparability of Biotechnological/Biological Products Subject to Changes in Their Manufacturing Process Q5E. (CPMP/ICH/5721/03) 2004. Accessed Apr 20 2022 [Available from: https://database.ich.org/sites/default/files/Q5E%20Guideline.pdf.

  55. FDA. Guidance for Industry Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs — General Considerations 2014 [Available from: https://www.fda.gov/media/88254/download.

Download references

Funding

This project was supported, in part, by an appointment to the ORISE Research Fellowship Program at the Center for Drug Evaluation and Research administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Contributions

YMW contributed substantially to the conception and design of the work. ZL collected and analyzed the data and drafted the manuscript. All authors contributed to the interpretation of the data and critical editing of the manuscript with important intellectual content.

Corresponding author

Correspondence to Zhe Li.

Ethics declarations

Disclosure

This article has been reviewed by FDA and determined to reflect the views of the authors but not the Agency. It should not be construed to represent FDA’s views or policies. The authors report no conflict of interest. We acknowledge Drs. Leopold Kang, Haoheng Yan, for their valuable input to this project and Drs. Amy Hsu, Shiew-Mei Huang, and Sarah Ridge for their constructive feedback on the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Du, X. & Wang, YM.C. A survey of FDA Approved Monoclonal Antibodies and Fc-fusion Proteins for Manufacturing Changes and Comparability Assessment. Pharm Res 41, 13–27 (2024). https://doi.org/10.1007/s11095-023-03627-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03627-5

Keywords

Navigation