Log in

Direct Drug Delivery of Low-Permeable Compounds to the Central Nervous System Via Intranasal Administration in Rats and Monkeys

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Intranasal administration enhances drug delivery to the brain by allowing targeted-drug delivery. Here, we investigated the properties that render a compound suitable for intranasal administration, and the differences between rodents and non-human primates in delivery to the brain.

Methods

The delivery of 10 low-permeable compounds to the brain, including substrates of efflux drug transporters expressed in the blood-brain barrier (didanosine, metformin, zolmitriptan, cimetidine, methotrexate, talinolol, ranitidine, atenolol, furosemide, and sulpiride) and two high-permeable compounds (ropinirole and midazolam) was evaluated following intranasal and intravenous administration in rats. Six of the 12 compounds (metformin, cimetidine, methotrexate, talinolol, sulpiride, and ropinirole) were also evaluated in monkeys, which have a similar nasal cavity anatomical structure to humans.

Results

In rats, most of the low-permeable compounds displayed an obvious increase in the brain/plasma concentration ratio (Kp) by intranasal administration (despite their substrate liability for efflux drug transporters); this was not observed with the high-permeable compounds. Similarly, intranasal administration increased Kp for all low-permeable compounds in monkeys.

Conclusions

Compound permeability is a key determinant of Kp increase by intranasal administration. This route of administration is more beneficial for low-permeable compounds and enhances their delivery to the brain in rodents and non-human primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUC:

Area under the plasma concentration-time curve

BBB:

Blood-brain barrier

BCRP:

Breast cancer resistance protein

CNS:

Central nervous system

Kp :

Tissue/plasma concentration ratio

LC/MS/MS:

Liquid chromatography/tandem mass spectrometry

P-gp:

P-glycoprotein

References

  1. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52.

    Article  CAS  Google Scholar 

  2. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14.

    Article  Google Scholar 

  3. Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv. 2014;21(2):75–86.

    Article  CAS  Google Scholar 

  4. Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139–77.

    Article  CAS  Google Scholar 

  5. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29–38.

    Article  Google Scholar 

  6. Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    Article  CAS  Google Scholar 

  7. Sakane T, Akizuki M, Taki Y, Yamashita S, Sezaki H, Nadai T. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J Pharm Pharmacol. 1995;47(5):379–81.

    Article  CAS  Google Scholar 

  8. Sakane T, Akizuki M, Yamashita S, Nadai T, Hashida M, Sezaki H. The transport of a drug to the cerebrospinal fluid directly from the nasal cavity: the relation to the lipophilicity of the drug. Chem Pharm Bull (Tokyo). 1991;39(9):2456–8.

    Article  CAS  Google Scholar 

  9. Sakane T, Akizuki M, Yamashita S, Sezaki H, Nadai T. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J Pharm Pharmacol. 1994;46(5):378–9.

    Article  CAS  Google Scholar 

  10. Genter MB, Krishan M, Augustine LM, Cherrington NJ. Drug transporter expression and localization in rat nasal respiratory and olfactory mucosa and olfactory bulb. Drug Metab Dispos. 2010;38(10):1644–7.

    Article  CAS  Google Scholar 

  11. Thiebaud N, Menetrier F, Belloir C, Minn AL, Neiers F, Artur Y, et al. Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium. Neurosci Lett. 2011;505(2):180–5.

    Article  CAS  Google Scholar 

  12. Molinas A, Sicard G, Jakob I. Functional evidence of multidrug resistance transporters (MDR) in rodent olfactory epithelium. PLoS One. 2012;7(5):e36167.

    Article  CAS  Google Scholar 

  13. Graff CL, Pollack GM. P-glycoprotein attenuates brain uptake of substrates after nasal instillation. Pharm Res. 2003;20(8):1225–30.

    Article  CAS  Google Scholar 

  14. Qosa H, Miller DS, Pasinelli P, Trotti D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res. 2015;1628(Pt B):298–316.

    Article  CAS  Google Scholar 

  15. Sakane T, Akizuki M, Yoshida M, Yamashita S, Nadai T, Hashida M, et al. Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. J Pharm Pharmacol. 1991;43(6):449–51.

    Article  CAS  Google Scholar 

  16. Westin UE, Bostrom E, Grasjo J, Hammarlund-Udenaes M, Bjork E. Direct nose-to-brain transfer of morphine after nasal administration to rats. Pharm Res. 2006;23(3):565–72.

    Article  CAS  Google Scholar 

  17. Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther. 2009;330(3):679–86.

    Article  CAS  Google Scholar 

  18. Abd-Elal RM, Shamma RN, Rashed HM, Bendas ER. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv. 2016;23(9):3374–86.

    Article  CAS  Google Scholar 

  19. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56(1):3–17.

    Article  CAS  Google Scholar 

  20. Merkus FW, van den Berg MP. Can nasal drug delivery bypass the blood-brain barrier?: questioning the direct transport theory. Drugs R D. 2007;8(3):133–44.

    Article  CAS  Google Scholar 

  21. Bitter C, Suter-Zimmermann K, Surber C. Nasal drug delivery in humans. Curr Probl Dermatol. 2011;40:20–35.

    Article  CAS  Google Scholar 

  22. Gizurarson S. The relevance of nasal physiology to the design of drug absorption studies. Adv Drug Deliv Rev. 1993;11(3):329–47.

    Article  CAS  Google Scholar 

  23. Lochhead JJ, Wolak DJ, Pizzo ME, Thorne RG. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 2015;35(3):371–81.

    Article  CAS  Google Scholar 

  24. Hemauer SJ, Patrikeeva SL, Nanovskaya TN, Hankins GD, Ahmed MS. Role of human placental apical membrane transporters in the efflux of glyburide, rosiglitazone, and metformin. Am J Obstet Gynecol. 2010;202(4):383 e1–7.

    Article  Google Scholar 

  25. Yu L, Zeng S. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2. J Pharm Pharmacol. 2007;59(5):655–60.

    Article  CAS  Google Scholar 

  26. Bicker J, Fortuna A, Alves G, Soares-da-Silva P, Falcao A. Elucidation of the impact of P-glycoprotein and breast Cancer resistance protein on the brain distribution of catechol-O-methyltransferase inhibitors. Drug Metab Dispos. 2017;45(12):1282–91.

    Article  CAS  Google Scholar 

  27. Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J. 2015;17(1):65–82.

    Article  CAS  Google Scholar 

  28. Oswald S, Terhaag B, Siegmund W. In vivo probes of drug transport: commonly used probe drugs to assess function of intestinal P-glycoprotein (ABCB1) in humans. Handb Exp Pharmacol. 2011;201:403–47.

    Article  CAS  Google Scholar 

  29. Lee K, Ng C, Brouwer KL, Thakker DR. Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers. J Pharmacol Exp Ther. 2002;303(2):574–80.

    Article  CAS  Google Scholar 

  30. Lin X, Skolnik S, Chen X, Wang J. Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model. Drug Metab Dispos. 2011;39(2):265–74.

    Article  CAS  Google Scholar 

  31. Bai M, Ma Z, Sun D, Zheng C, Weng Y, Yang X, et al. Multiple drug transporters mediate the placental transport of sulpiride. Arch Toxicol. 2017;91:3873–84.

    Article  CAS  Google Scholar 

  32. Kadono K, Akabane T, Tabata K, Gato K, Terashita S, Teramura T. Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor. Drug Metab Dispos. 2010;38(7):1230–7.

    Article  CAS  Google Scholar 

  33. Kandimalla KK, Donovan MD. Localization and differential activity of P-glycoprotein in the bovine olfactory and nasal respiratory mucosae. Pharm Res. 2005;22(7):1121–8.

    Article  CAS  Google Scholar 

  34. Shingaki T, Hidalgo IJ, Furubayashi T, Sakane T, Katsumi H, Yamamoto A, et al. Nasal delivery of P-gp substrates to the brain through the nose-brain pathway. Drug Metab Pharmacokinet. 2011;26(3):248–55.

    Article  CAS  Google Scholar 

  35. Misra A, Kher G. Drug delivery systems from nose to brain. Curr Pharm Biotechnol. 2012;13(12):2355–79.

    Article  CAS  Google Scholar 

  36. Ruigrok MJ, de Lange EC. Emerging insights for translational pharmacokinetic and pharmacokinetic-Pharmacodynamic studies: towards prediction of nose-to-brain transport in humans. AAPS J. 2015;17(3):493–505.

    Article  CAS  Google Scholar 

  37. Nakamichi N, Kato Y. Physiological roles of carnitine/organic cation transporter OCTN1/SLC22A4 in neural cells. Biol Pharm Bull. 2017;40(8):1146–52.

    Article  CAS  Google Scholar 

  38. Nakamichi N, Shima H, Asano S, Ishimoto T, Sugiura T, Matsubara K, et al. Involvement of carnitine/organic cation transporter OCTN1/SLC22A4 in gastrointestinal absorption of metformin. J Pharm Sci. 2013;102(9):3407–17.

    Article  CAS  Google Scholar 

  39. Schriever VA, Reither N, Gerber J, Iannilli E, Hummel T. Olfactory bulb volume in smokers. Exp Brain Res. 2013;225(2):153–7.

    Article  Google Scholar 

  40. Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry. 2007;62(8):847–55.

    Article  CAS  Google Scholar 

  41. Yamada K, Hasegawa M, Kametani S, Ito S. Nose-to-brain delivery of TS-002, prostaglandin D2 analogue. J Drug Target. 2007;15(1):59–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgement and Disclosures

All authors were employees of Takeda Pharmaceutical Company Limited when the study was performed. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Iwasaki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Fig. 1

Time profiles of plasma concentration in rats after intravenous (open circle) or intranasal administration (closed square) (mean ± S.D., n = 3 / time point). (PNG 250 kb)

High resolution image

(EPS 93 kb)

Supplemental Fig. 2

Time profiles of olfactory bulb concentration in rats after intravenous (open circle) or intranasal administration (closed square) (mean ± S.D., n = 3 / time point). The concentration below the quantitation limit was assumed to be 0 and not shown in the figure. The bottom of the error bar, which extends to a negative y-axis value, is not shown. (PNG 254 kb)

High resolution image

(EPS 91 kb)

Supplemental Fig. 3

Time profiles of olfactory tract concentration in rats after intravenous (open circle) or intranasal administration (closed square) (mean ± S.D., n = 3 / time point). The concentration below the quantitation limit was assumed to be 0 and not shown in the figure. The bottom of the error bar, which extends to a negative y-axis value, is not shown. (PNG 248 kb)

High resolution image

(EPS 90 kb)

Supplemental Fig. 4

Time profiles of trigeminal nerve concentration in rats after intravenous (open circle) or intranasal administration (closed square) (mean ± S.D., n = 3 / time point). The bottom of the error bar, which extends to a negative y-axis value, is not shown. (PNG 255 kb)

High resolution image

(EPS 94 kb)

Supplemental Fig. 5

Time profiles of the rest of the brain concentration in rats after intravenous (open circle) or intranasal administration (closed square) (mean ± S.D., n = 3 / time point). The concentration below the quantitation limit was assumed to be 0 and not shown in the figure. The bottom of the error bar, which extends to a negative y-axis value, is not shown. (PNG 243 kb)

High resolution image

(EPS 90 kb)

Supplemental Fig. 6

The relationship of Kp,in/Kp,iv calculated by AUC and at 0.25 h in rat olfactory bulb (A), olfactory tract (B), trigeminal nerve (C), and rest of the brain (D). Solid line represents line of unity. The area between dashed lines represents an area within a 2-fold error. (PNG 96 kb)

High resolution image

(EPS 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, S., Yamamoto, S., Sano, N. et al. Direct Drug Delivery of Low-Permeable Compounds to the Central Nervous System Via Intranasal Administration in Rats and Monkeys. Pharm Res 36, 76 (2019). https://doi.org/10.1007/s11095-019-2613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2613-8

Key Words

Navigation