Log in

Polypeptide-based Micelles for Delivery of Irinotecan: Physicochemical and In vivo Characterization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Irinotecan (IRI) is a broad spectrum chemotherapeutic agent used individually or in combination to treat multiple malignancies. Present study aimed at develo** polypeptide-based block ionomer complex (BIC) micelles to improve the pharmacokinetic and antitumor response of IRI.

Methods

Irinotecan-loaded BIC micelles (IRI-BIC) was prepared and evaluated in terms of various physicochemical and biological parameters including size, shape, release, cytotoxicity, and pharmacokinetic analysis. In vivo antitumor efficacy was investigated in SCC-7 bearing xenograft tumor model.

Results

IRI was successfully incorporated into the ionic cores of poly(ethylene glycol)-b-poly(aspartic acid) (PEG-b-PAA) with a high drug loading capacity (~80%). The electrostatically assembled BIC micelles were nanosized (~50 nm) with uniform size distribution pattern (PDI~0.1). The BIC micelles exhibited pH-sensitiveness with limited release of IRI at physiological conditions and significantly enhanced the release rate at acidic conditions, making it an ideal delivery system for tumor targeting. The IRI-BIC showed a dose-dependent cytotoxicity in SCC-7 and A-549 cancer cell lines. Pharmacokinetic studies clearly showed that BIC micelles improved the IRI blood circulation time and decreased its elimination rate constant, while that of free IRI, rapidly eliminated from the central compartment. Moreover, IRI-BIC showed superior therapeutic performance with no toxicity in BALB/c nude xenograft mice. The micelle treated group showed an inhibition rate of ~66% compared to free IRI treated group.

Conclusions

Taken together, BIC micelles could be a potentially useful nanovehicle with promising applicability in systemic tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABS:

Acetate buffered saline

AUC:

The area under the drug concentration–time curve from 0 to 24 h

BIC:

Block ionomer complex

Cl:

Clearance

Cmax :

The peak concentration of drug

DLS:

Dynamic light scattering

EPR:

Enhanced permeation and retention effect

FT-IR:

Fourier transform infrared spectroscopy

IRI:

Irinotecan

IRI-BIC:

Irinotecan-loaded BIC

K el :

Elimination rate constant

MRT:

Mean retention time

PBS:

Phosphate buffered saline

PDI:

Polydispersity index

PEG-b-PAA:

Poly(ethylene glycol)-b-poly(aspartic acid)

t 1/2 :

Half-life

TEM:

Transmission electron microscope

Tmax :

The time to reach the peak concentration

V ss :

Volume of distribution

XRD:

X-ray diffractometer

References

  1. Kunii R, Onishi H, Machida Y. Preparation and antitumor characteristics of PLA/(PEG-PPG-PEG) nanoparticles loaded with camptothecin. Eur J Pharm Biopharm. 2007;67:9–17.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang JA, Xuan T, Parmar M, Ma L, Ugwu S, Ali S, et al. Development and characterization of a novel liposome-based formulation of SN-38. Int J Pharm. 2004;270:93–107.

    Article  CAS  PubMed  Google Scholar 

  3. Ebrahimnejad P, Dinarvand R, Sajadi A, Jaafari MR, Nomani AR, Azizi E, et al. Preparation and in vitro evaluation of actively targetable nanoparticles for SN-38 delivery against HT-29 cell lines. Nanomedine Nanotechnol Biol Med. 2010;6:478–85.

    Article  CAS  Google Scholar 

  4. Zhang H, Wang J, Mao W, Huang J, Wu X, She Y, et al. Novel SN38 conjugate-forming nanoparticles as anticancer prodrug: In vitro and in vivo studies. J Control Release. 2013;166:147–58.

    Article  CAS  PubMed  Google Scholar 

  5. Tobin P, Rivory L, Clarke S. Inhibition of acetylcholinesterase in patients receiving irinotecan (camptothecin-11). Clin Pharmacol Ther. 2004;76:505–6.

    Article  PubMed  Google Scholar 

  6. Bleiberg H. CPT-11 in gastrointestinal cancer. Eur J Cancer. 1999;35:371–9.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Cao DY, Wang J, **ang B, Dun JN, Fang Y, et al. PEG coated irinotecan cationic liposomes improve the therapeutic efficacy of breast cancer in animals. Eur Rev Med Pharmacol Sci. 2013;17:3347–61.

    CAS  PubMed  Google Scholar 

  8. Guo S, Zhang X, Gan L, Zhu C, Gan Y. Effect of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) micelles on pharmacokinetics and intestinal toxicity of irinotecan hydrochloride: potential involvement of breast cancer resistance protein (ABCG2). J Pharm Pharmacol. 2010;62:973–84.

    Article  CAS  PubMed  Google Scholar 

  9. Matsumura Y. Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev. 2011;63:184–92.

    Article  CAS  PubMed  Google Scholar 

  10. Sapra P, Zhao H, Mehlig M, Malaby J, Kraft P, Longley C, et al. Novel delivery of SN38 markedly inhibits tumor growth in xenografts, including a camptothecin-11—refractory model. Clin Cancer Res. 2008;14:1888–96.

    Article  CAS  PubMed  Google Scholar 

  11. Kim JO, Ramasamy T, Yong CS, Nukolova NV, Bronich TK, Kabanov AV. Cross-linked polymeric micelles based on block ionomer complexes. Mendeleev Commun. 2013;23:179–86.

    Article  CAS  Google Scholar 

  12. Mishra D, Kang HC, Bae YH. Reconstitutable charged polymeric (PLGA)(2)-b-PEI micelle for gene therapeutics delivery. Biomaterials. 2011;32:3845–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Riess G. Micellization of block copolymers. Prog Polym Sci. 2003;28:1107–70.

    Article  CAS  Google Scholar 

  14. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.

    Article  CAS  PubMed  Google Scholar 

  15. Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kataoka K. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system. J Drug Target. 1997;7:171–86.

    Article  Google Scholar 

  16. Alakhov VY, Klinkski E, Li S, Pietrzynski G, Venne A, Batrakova E, et al. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloid Surf B Biointerfaces. 1999;16:113–34.

    Article  CAS  Google Scholar 

  17. Kim JO, Kabanov AV, Bronich TK. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J Control Release. 2009;138:197–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bronich TK, Popov AM, Eisenberg A, Kabanov VA, Kabanov AV. Effects of block length and structure of surfactant on self-assembly and solution behavior of block ionomer complexes. Langmuir. 2000;16:481–9.

    Article  CAS  Google Scholar 

  19. Oh KT, Bromberg L, Hatton TA, Kabanov AV. Block ionomer complexes as prospective nanocontainers for drug delivery. J Control Release. 2006;115:9–17.

    Article  CAS  PubMed  Google Scholar 

  20. Tian Y, Bromberg L, Lin SN, Hatton TA, Tam KC. Complexation and release of doxorubicin from its complexes with Pluronic P85-b-poly(acrylic acid) block copolymers. J Control Release. 2007;121:137–45.

    Article  CAS  PubMed  Google Scholar 

  21. Tian Y, Ravi P, Bromberg L, Hatton TA, Tam KC. Synthesis and aggregation behavior of Pluronic F87/poly(acrylic acid) block copolymer in the presence of doxorubicin. Langmuir. 2007;23:2638–46.

    Article  CAS  PubMed  Google Scholar 

  22. Ramasamy T, Kim J, Choi HG, Yong CS, Kim JO. Novel dual drug-loaded block ionomer complex micelles for enhancing the efficacy of chemotherapy treatments. J Biomed Nanotechnol. 2014;10:1304–12.

    Article  CAS  PubMed  Google Scholar 

  23. Ramasamy T, Khandasami US, Ruttala H, Shanmugam S. Development of solid lipid nanoparticles enriched hydrogels for topical delivery of anti-fungal agent. Macromol Res. 2012;20:682–92.

    Article  CAS  Google Scholar 

  24. Ramasamy TG, Haidar ZS. Characterization and cytocompatibility eval-uation of novel core–shell solid lipid nanoparticles for the controlled and tunable delivery of a model protein. J Bionanosci. 2012;5:143–54.

    Article  Google Scholar 

  25. Silverstein RM, Bassler GC, Morrill TC. Spectrometric Identification of Organic Compounds. 5th ed. NY: John Wiley & Sons; 1991. p. 91–142.

    Google Scholar 

  26. Shu S, Zhang X, Teng D, Wang Z, Li C. Polyelectrolyte nanoparticles based on water-soluble chitosan–poly(l-aspartic acid)–polyethylene glycol for controlled protein release. Carbohydr Res. 2009;344:1197–204.

    Article  CAS  PubMed  Google Scholar 

  27. Blume A, Hubner W, Messner G. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemist. 1988;27:8239–49.

    Article  CAS  Google Scholar 

  28. Dicko A, Tardi P, **e X, Mayer L. Role of copper gluconate/triethanolamine in irinotecan encapsulation inside the liposomes. Int J Pharm. 2007;337:219–28.

    Article  CAS  PubMed  Google Scholar 

  29. Ramasamy T, Tran TH, Choi JY, Cho HJ, Kim JH, Yong CS, et al. Layer-by-layer coated lipid–polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr Polym. 2014;102:653–61.

    Article  CAS  PubMed  Google Scholar 

  30. Torchilin VP. PEG-based micelles as carriers of contrast agent for different imaging modalities. Adv Drug Deliv Rev. 2002;54:235–52.

    Article  CAS  PubMed  Google Scholar 

  31. Subedi RK, Kang KW, Choi HK. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37:508–13.

    Article  CAS  PubMed  Google Scholar 

  32. Ramasamy T, Tran TH, Cho HJ, Kim JH, Kim Y, Jeon JY, et al. Chitosan-based polyelectrolyte complexes as potential nanoparticulate carriers: physicochemical and biological characterization. Pharm Res. 2014;31:1302–14.

    Article  CAS  PubMed  Google Scholar 

  33. Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP. Mechanism of action of camptothecin. Ann NY Acad Sci. 2000;922:1–10.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu S, Hong M, Tang G, Qian L, Lin J, Jiang Y, et al. Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: The effects of PEGylation degree and drug conjugation style. Biomaterials. 2010;31:1360–71.

    Article  CAS  PubMed  Google Scholar 

  35. Assumpçao JU, Campos ML, Ferraz Nogueira Filho MA, Pestana KC, Baldan HM, FormarizPilon TP, et al. Biocompatible microemulsion modifies the pharmacokinetic profile and cardiotoxicity of doxorubicin. J Pharm Sci. 2013;102:289–96.

    Article  PubMed  Google Scholar 

  36. Lee Y, Lee H, Kim YB, Kim J, Hyeon T, Park H, et al. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv Mat. 2009;20:4154–7.

    Google Scholar 

  37. Parveen S, Sahoo SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol. 2011;670:372–83.

    Article  CAS  PubMed  Google Scholar 

  38. Kim JY, Kim JK, Park JS, Byun Y, Kim CK. The use of PEGylated liposomes to prolong circulation life-times of tissue plasminogen activator. Biomaterials. 2009;30:5751–6.

    Article  CAS  PubMed  Google Scholar 

  39. Kim JH, Kim YS, Park K, Lee S, Nam HY, Min KH, et al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release. 2008;127:41–9.

    Article  CAS  PubMed  Google Scholar 

  40. Mendoza AEH, Préat V, Mollinedo F, Blanco-Prieto MJ. In vitro and in vivo efficacy of edelfosine-loaded lipid nanoparticles against glioma. J Control Release. 2011;156:421–6.

    Article  Google Scholar 

Download references

Acknowledgments and Disclosures

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (No. 2012R1A2A2A02044997 and No.2012R1A1A1039059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Soon Yong or Jong Oh Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, T., Choi, J.Y., Cho, H.J. et al. Polypeptide-based Micelles for Delivery of Irinotecan: Physicochemical and In vivo Characterization. Pharm Res 32, 1947–1956 (2015). https://doi.org/10.1007/s11095-014-1588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1588-8

KEY WORDS

Navigation