Log in

Deuterated Drugs

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A deuterated drug comprises diminutive molecules in which deuterium replaces one or more than one hydrogen atoms of the molecule. As deuterium and hydrogen possess almost similar physical properties, deuterium exchange is the smallest structural change that can be made to a molecule. This process is called deuteration. It is an extremely useful tool for the enrichment of drug’s metabolism. Selective replacement with deuterium leads to amplified bond strength which in turn increases the biological half-life and thus metabolic stability of the drug. Furthermore, deuterium substitution may also result in metabolic shunting leading to decreased exposure of critical organs to unwanted and toxic metabolites or increased exposure to desired active metabolites. This article focuses on numerous illustrations where deuteration came up with improvement of metabolic stability of drug and reduction in toxicity relative to the untreated drug while retaining its substantial pharmacological profile. Deuterated edition of present drugs can demonstrate better pharmacokinetic or toxicological properties due to stronger deuterium–carbon bonds by altering their metabolism and hence are a subject of major research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. S. Kaur and M. Gupta, Glob. J. Pharmaceut. Sci., 1(4), (2017).

  2. A. Zlatska, I. Gordiienko, R. Vasyliev, et al., The Scientific World J., Vol. 2018, Article ID 5454367, 10 pages (2018).

  3. C. R. Carr, A. Taheri, and L. A. Berben, J. Am. Chem. Soc., 142(28), 12299 – 12305 (2020).

    Article  CAS  Google Scholar 

  4. F. H. Westheimer, Chem. Rev., 61(3), 265 – 273 (1961).

    Article  CAS  Google Scholar 

  5. Z. Mao and C. Campbell, ACS Catalysis, 10(7), 4181 – 4192 (2020).

    Article  CAS  Google Scholar 

  6. G. Timmins, Expert Opin. Ther. Pat., 24(10), 1067 – 1075 (2014).

    Article  CAS  Google Scholar 

  7. R. H. Howland, J. Psychosocial Nursing and Mental Health Services, 53(9), 13 – 16 (2015).

    Article  Google Scholar 

  8. T. Pirali, M. Serafini, S. Cargnin, and A. Genazzani, J. Med. Chem., 62(11), 5276 – 5297 (2019).

    Article  CAS  Google Scholar 

  9. S. L. Harbeson and R. D. Tung, Annu. Rep. Med. Chem., 46, 403 – 417 (2011).

    CAS  Google Scholar 

  10. M. Dean and V. Sung, Drug Des. Devel. Ther., 12, 313 – 319 (2018).

    Article  CAS  Google Scholar 

  11. F. Maltais, Y. Jung, M. Chen, et al., J. Med. Chem., 52(24), 7993 – 8001 (2009).

    Article  CAS  Google Scholar 

  12. R. Vardanyan and V. H. Ruby, Synthesis of Best-Seller Drugs, 687 – 736 (2016).

  13. R. Garay and G. Grossberg, Expert Opin. Investig. Drugs, 26(1), 121 – 132 (2017).

    Article  CAS  Google Scholar 

  14. J. L. Cummings, C. G. Lyketsos, E. R. Peskind, et al., JAMA, 314(12), 1242 – 1254 (2015).

    Article  CAS  Google Scholar 

  15. L. Wu, A. Aslanian, J. Liu, et al., Blood, 120(21), 2463 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nutan Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, N., Kini, R. & Kad, P. Deuterated Drugs. Pharm Chem J 55, 1372–1377 (2022). https://doi.org/10.1007/s11094-022-02584-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02584-4

Keywords

Navigation