Log in

Fractal-view analysis of local fractional Fokker–Planck equation occurring in modelling of particle’s Brownian motion

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the solution and behaviour of local fractional Fokker–Planck equation (LFFPE) is investigated in fractal media. For this purpose, the local fractional homotopy perturbation Elzaki transform method (LFHPETM) is proposed and utilized to explore the solution of LFFPE. The proposed scheme is a merger of well known local fractional homotopy perturbation technique and recently introduced local fractional Elzaki transform (LFET). The convergence and uniqueness analyses for LFHPETM solution of the general partial differential equation is also presented along with the computational procedure of this new hybrid combination. Three examples of LFFPE are illustrated to depict the applicability of the employed method with graphical simulations on Cantor set. The copulation of LFET with local fractional homotopy perturbation method (LFHPM) efficiently provides the faster solution for LFFPE in a fractal domain as compared to the LFHPM. Furthermore, the achieved solutions are also in a good match with existing solutions. The 3D behavior of solutions of LFFPEs are presented for fractal order \(\ln 2/\ln 3\). Figures illustrate the 3D surface graphics of solutions with respect to input variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not relevant to this article as no data sets were provided or figured out in the present work.

References

  • Akinfe, K.T.: A reliable analytic technique for the modified prototypical Kelvin-Voigt viscoelastic fluid model by means of the hyperbolic tangent function. Partial Differ. Equ. Appl. Math. 7, 100523 (2023)

    Article  Google Scholar 

  • Akinfe, T.K., Loyinmi, A.C.: Solitary wave solution to the generalized Burgers-Fisher’s equation using an improved differential transform method: a hybrid scheme approach. Heliyon 7(5), e07001 (2021)

    Article  Google Scholar 

  • Akinfe, K.T., Loyinmi, A.C.: An improved differential transform scheme implementation on the generalized Allen–Cahn equation governing oil pollution dynamics in oceanography. Partial Differ. Equ. Appl. Math. 6, 100416 (2022a)

    Article  Google Scholar 

  • Akinfe, K.T., Loyinmi, A.C.: The implementation of an improved differential transform scheme on the Schrodinger equation governing wave-particle duality in quantum physics and optics. Results Phys. 40, 105806 (2022b)

    Article  Google Scholar 

  • Althobaiti, S., Dubey, R.S., Prasad, J.G.: Solution of local fractional generalized Fokker-Planck equation using local fractional Mohand Adomian decomposition method. Fractals 30(1), 2240028 (2022)

    Article  ADS  Google Scholar 

  • Babakhani, A., Gejji, V.D.: On calculus of local fractional derivatives. J. Math. Anal. Appl. 270, 66–79 (2002)

    Article  MathSciNet  Google Scholar 

  • Baleanu, D., Srivastava, H.M., Yang, X.-J.: Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets. Progr. Fract. Differ. Appl. 1(1), 1–10 (2015)

    Google Scholar 

  • Baumann, G., Stenger, F.: Fractional Fokker-Planck equation. Mathematics 5(1), 1–19 (2017)

    Article  Google Scholar 

  • Bologna, M., Tsallis, C., Grigolini, P.: Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: exact time-dependent solutions. Phys. Rev. E 62, 2213–2218 (2000)

    Article  ADS  Google Scholar 

  • Chandresekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  ADS  MathSciNet  Google Scholar 

  • Chen, G.-S.: Mean value theorems for local fractional integrals on fractal space. Adv. Mech. Eng. Appl. 1, 5–8 (2012)

    Google Scholar 

  • Deng, W.H.: Finite element method for the space and time fractional Fokker-Planck equation, SIAM. J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  Google Scholar 

  • Deng, S., Ge, X.: Fractional Fokker-Planck equation in a fractal medium. Thermal Sci. 24(4), 2589–2595 (2020)

    Article  Google Scholar 

  • Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: A hybrid computational method for local fractional dissipative and damped wave equations in fractal media. Waves Random Complex Med. (2022a). https://doi.org/10.1080/17455030.2022.2049395

    Article  Google Scholar 

  • Dubey, S., Dubey, V.P., Singh, J., Alshehri, A.M., Kumar, D.: Computational study of a local fractional Tricomi equation occurring in fractal transonic flow. J. Comput. Nonlinear Dynam. 17, 081006 (2022b). https://doi.org/10.1115/1.4054482

    Article  Google Scholar 

  • Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Analysis of local fractional coupled Helmholtz and coupled Burgers’ equations in fractal media. AIMS Math. 7(5), 8080–8111 (2022c)

    Article  MathSciNet  Google Scholar 

  • Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: An efficient analytical scheme with convergence analysis for computational study of local fractional Schrӧdinger equations. Math. Comput. Simul 196, 296–318 (2022d)

    Article  Google Scholar 

  • Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Analysis and fractal dynamics of some local fractional partial differential equations occurring in physical sciences. J. Comput. Nonlinear Dynam. 18(3), 1–23 (2022e)

    Google Scholar 

  • Family, F., Vicsec, T.: Dynamics of fractal surfaces. World Scientific, Singapore (1991)

    Book  Google Scholar 

  • Fokker, A.D.: Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys. 348, 810–820 (1914a)

    Article  Google Scholar 

  • Fokker, A.: The median energy of rotating electrical dipoles in radiation fields. Ann. Phys. 43, 810–820 (1914b)

    Article  Google Scholar 

  • Hahn, M.G., Kobayashi, K., Umarov, S.: Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion. Proc. Am. Math. Soc. 139(2), 691–705 (2011)

    Article  MathSciNet  Google Scholar 

  • İbiş, B.: Application of fractional variational iteration method for solving fractional Fokker-Planck equation. Rom. Journ. Phys. 60(7–8), 971–979 (2015)

    Google Scholar 

  • Jassim, H.K.: New approaches for solving Fokker-Planck equation on Cantor sets within local fractional operators. J. Math. 2015, 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  • Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimension. Chaos 6(4), 505–513 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  • Kolwankar, K.M., Gangal, A.D.: Hölder exponents of irregular signals and local fractional derivatives. Pramana J. Phys. 48, 49–68 (1997)

    Article  ADS  Google Scholar 

  • Kolwankar, K.M., Gangal, A.D.: Local fractional Fokker-Planck equation. Phy. Rev. Lett. 80(2), 214–217 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  • Kumar, D., Dubey, V.P., Dubey, S., Singh, J., Alshehri, A.M.: Computational analysis of local fractional partial differential equations in realm of fractal calculus. Chaos Solitons Fractals 167, 113009 (2023)

    Article  MathSciNet  Google Scholar 

  • Kumar, D., Jassim, H.K., Singh, J., Dubey, V.P.: A computational study of local fractional Helmholtz and coupled Helmholtz equations in fractal media. In: Singh, J., Anastassiou, G.A., Baleanu, D., Kumar, D. (eds.) In book: Advances in Mathematical modelling, Applied Analysis and Computation, ICMMAAC 2022 Lecture Notes in Networks and Systems, pp. 286–298. Springer, Berlin (2023)

    Google Scholar 

  • Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Loyinmi, A.C., Akinfe, T.K.: Exact solutions to the family of Fisher’s reaction-diffusion equation using Elzaki homotopy transformation perturbation method. Eng. Rep. 2(2), e12084 (2020a). https://doi.org/10.1002/eng2.12084

    Article  Google Scholar 

  • Loyinmi, A.C., Akinfe, T.K.: An algorithm for solving the Burgers-Huxley equation using the Elzaki transform. SN Appl. Sci. 2, 7 (2020b). https://doi.org/10.1007/s42452-019-1653-3

    Article  Google Scholar 

  • Mofarreh, F., Khan, A., Shah, R., Abdeljabbar, A.: A comparative analysis of fractional-order Fokker-Planck equation. Symmetry 15(2), 1–19 (2023)

    Article  Google Scholar 

  • Planck, M.: Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsberichte Der Preussischen Akademie Der Wissenschaften Zu Berlin 24, 324–341 (1917)

    Google Scholar 

  • Prakash, A., Kaur, H.: An efficient hybrid computational technique for solving nonlinear local fractional partial differential equations arising in fractal media. Nonlinear Eng. 7(3), 229–235 (2018)

    Article  ADS  Google Scholar 

  • Risken, H.: The Fokker-Planck equation: Method of solution and applications. Springer, Berlin/Heidelberg (1989)

    Google Scholar 

  • Singh, J., Kumar, D., Baleanu, D., Rathore, S.: On the local fractional wave equation in fractal strings. Math. Method Appl. Sci. 42(5), 1588–1595 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Singh, J., Ahmadian, A., Rathore, S., Kumar, D., Baleanu, D., Salimi, M., Salahshour, S.: An efficient computational approach for local fractional Poisson equation in fractal media. Numer. Methods Partial Differ. Equ. 37(2), 1439–1448 (2020a)

    Article  MathSciNet  Google Scholar 

  • Singh, J., Jassim, H.K., Kumar, D.: An efficient computational technique for local fractional Fokker-Planck equation. Phys. A 555, 124525 (2020b)

    Article  MathSciNet  Google Scholar 

  • Singh, J., Jassim, H.K., Kumar, D., Dubey, V.P.: Fractal dynamics and computational analysis of local fractional Poisson equations arising in electrostatics. Commun. Theor. Phys. 75, 125002 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  • Sun, X., Zhao, F., Chen, S.: Numerical algorithms for the time-space tempered fractional Fokker-Planck equation. Adv. Differ. Eqs. 259, 1–17 (2017)

    Google Scholar 

  • Tarasov, V.E.: Fractional Fokker-Planck equation for fractal media. Chaos 15, 461–478 (2005)

    Article  MathSciNet  Google Scholar 

  • Wang, K.-J.: On the generalized variational principle of the fractal Gardner equation. Fractals 31(9), 2350120 (2023a)

    Article  ADS  Google Scholar 

  • Wang, K.-J.: New exact solutions of the local fractional modified equal width-Burgers equation on the Cantor sets. Fractals 31(9), 2350111 (2023b)

    Article  ADS  Google Scholar 

  • Wang, K.-J., Shi, F.: A new perspective on the exact solutions of the local fractional modified Benjamin–Bona–Mahony equation on Cantor sets. Fractal Fract. 7(1), 1–12 (2023)

    Article  MathSciNet  Google Scholar 

  • Wang, K.-J., Xu, P.: Generalized variational structure of the fractal modified Kdv-Zakharov-Kuznetsov equation. Fractals 31(7), 2350084 (2023)

    Article  ADS  Google Scholar 

  • Wang, K.-J., Xu, P., Shi, F.: Nonlinear dynamic behaviors of the fractional (3+1)-dimensional modified Zakharov-Kuznetsov equation. Fractals 31(7), 2350088 (2023a)

    Article  ADS  Google Scholar 

  • Wang, K.-J., Shi, F., Si, J., Liu, J.-H., Wang, G.-D., Liu, J.-H., Wang, G.-D.: Non-differentiable exact solutions of the local fractional Zakharov-Kuznetsov equation on the Cantor sets. Fractals 31(3), 2350028 (2023b)

    Article  ADS  Google Scholar 

  • Wang, K.-J., Wang, G.-D., Shi, F.: The pulse narrowing nonlinear transmission lines model within the local fractional calculus on the Cantor sets. COMPEL- Int. J. Comput. Math. Electr. Electr. Eng. 42(6), 1576–1593 (2023c)

    Article  Google Scholar 

  • Yan, S.-H., Chen, X.-H., **e, G.-N., Cattani, C., Yang, X.-J.: Solving Fokker-Planck equations on Cantor sets using local fractional decomposition method. Abstr. Appl. Anal. 2014, 1–6 (2014)

    Article  MathSciNet  Google Scholar 

  • Yang, X.-J.: Local fractional functional analysis and its applications. Asian Academic Publisher, Hong Kong (2011)

    Google Scholar 

  • Yang, X.-J.: Advanced local fractional calculus and its applications. World Science Publisher, New York (2012a)

    Google Scholar 

  • Yang, X.-J.: A short note on local fractional calculus of function of one variable. J. Appl. Libr. Inf. Sci. 1, 1–12 (2012b)

    ADS  Google Scholar 

  • Yang, X.-J., Baleanu, D.: Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 23(2), 3–8 (2013)

    Google Scholar 

  • Yang, X.-J., Srivastava, H.M., Cattani, C.: Local fractional homotopy perturbation method for solving fractional partial differential equations arising in mathematical physics. Rom. Rep. Phys. 67, 752–761 (2015)

    Google Scholar 

  • Zaslavsky, G.M.: Fractional kinetic equation for Hamiltonian chaos. Physica D 76(1–3), 110–122 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, Y., Cattani, C., Yang, X.-J.: Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains. Entropy 17, 6753–6764 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Ziane, D., Cherif, M.H.: Local fractional Elzaki transform and its applications to local fractional differential equations. J. New Results Sc 10(3), 19–33 (2021)

    Article  Google Scholar 

  • Ziane, D., Baleanu, D., Belghaba, K., Cherif, M.H.: Local fractional Sumudu decomposition method for linear partial differential equations with local fractional derivative. J. King Saud Univ. Sci. 31(1), 83–88 (2019)

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have made equal contribution in the preparation of the manuscript. All the five authors have accorded their approval for the final manuscript.

Corresponding author

Correspondence to Devendra Kumar.

Ethics declarations

Conflict of interest

The authors affirm that there are no conflicting interests towards the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Dubey, V.P., Kumar, D. et al. Fractal-view analysis of local fractional Fokker–Planck equation occurring in modelling of particle’s Brownian motion. Opt Quant Electron 56, 1109 (2024). https://doi.org/10.1007/s11082-024-06842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06842-5

Keywords

Navigation