Log in

Inhomogeneous inclusions enhanced negative absorption in the plasma-dielectric nanostructure

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Lately, the negative absorption in plasma-dielectric nanostructures provided a fertile ground for the advancement of THz electronic appliances. Herein we present a plasma-dielectric nanostructure aiming to achieve enhanced negative absorption in the high frequency region resulting because of strong plasma-light interaction. The paper presents dispersion maps of surface plasmon polaritons propagating at the boundary of the nanostructured metamaterial. The plasma-dielectric nanostructure leads to the dispersion equation and resonance mode. It is worthwhile mentioning that the former can couple with the incident wave to create an enhanced resonance. Doing so, the dispersion of the surface waves along with the resonance are involved in the plasma-light interaction and increase the negative absorption. Doing so, the resonance coupling defines the distribution of negative absorption, and the maximum is dominated by dispersion. Moreover, the dispersion relation describing propagation of surface waves at the interface of highly anisotropic metamaterial has been applied to the inhomogeneous metamaterial case. Also, based on the behaviour of the effective properties of the metamaterial it has been concluded that the structure under investigation belongs to the class of the hyperbolic metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Any data is available upon the reasonable request.

References

  • Abeles, F.: Optical properties of inhomogeneous films. Natl. Bur Stand. 256, 41–58 (1964)

    Google Scholar 

  • Agranovich, V.M., Kravtsov, V.E.: Notes on crystal optics of superlattices. Solid State Commun. 55(1), 85–90 (1985)

    Article  ADS  Google Scholar 

  • Campione, S., Marquier, F., Hugonin, J.-P., Ellis, A.R., Klem, J.F., Sinclair, M.B., Luk, T.S.: Directional and monochromatic thermal emitter from epsilon-nearzero conditions in semiconductor hyperbolic metamaterials. Sci. Rep 6, 34746 (2016)

    Article  ADS  Google Scholar 

  • Chambers, B., Tennant, A.: Active Dallenbach Radar absorber. In: IEEE Antennas and Propagation Society International Symposium, pp. 381–384. IEEE (2006).

  • Dalarsson, M., Tassin, P.: Analytical solution for wave propagation through a graded index interface between a right handed material. Opt. Express. 17, 6747–6752 (2009)

    Article  ADS  Google Scholar 

  • Gric, T.: Surface-plasmon-polaritons at the interface of nanostructured metamaterials. Pr. Electromaghn. Res. 46, 165–172 (2016)

    Article  Google Scholar 

  • Gric, T., Hess, O: Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials. Opt. Express. 25, 11466–11476 (2017)

    Article  ADS  Google Scholar 

  • Guo, T., Zhu, L., Chen, P.-Y., Argyropoulos, C.: Tunable terahertz amplification based on photoexcited active graphene hyperbolic metamaterials. Opt. Mater. Express. 8(12), 3941–3952 (2018)

    Article  ADS  Google Scholar 

  • Hu, Y., Luo, X., Chen, Y., Liu, Q., Li, X., Wang, Y., Liu, N., Duan, H.: 3D-Integrated metasurfaces for full-colour holography. Light Sci. Appl. 8, 86 (2019)

    Article  Google Scholar 

  • Ioannidis, T., et al.: Enhancing the properties of plasmonic nanowires. Mater. Res. Express 6, 065014 (2019)

    Article  ADS  Google Scholar 

  • Iorsh, I., Orlov, A., Belov, P., Kivshar, Y.: Interface modes in nanostructured metal-dielectric metamaterials. Appl. Phys. Lett. 99, 151914 (2011)

    Article  ADS  Google Scholar 

  • Jacobsson, R.: Light reflection from films of continuously varying refractive index. In: Wolf, E. (ed.) in Progress in Optics, vol. 5, pp. 247–286. Elsevier, North-Holland (1966)

    Google Scholar 

  • Javed, I., Kim, J., Naveed, M.A., Oh, D.K., Jeon, D., Kim, I., Zubair, M., Massoud, Y., Mehmood, M.Q., Rho, J.: Broad-Band polarization-insensitive Metasurface Holography with a single-phase map. ACS Appl. Mater. Interfaces. 14, 36019–36026 (2022)

    Article  Google Scholar 

  • Kildemo, M., Hunderi, O., Drevillon, B.: Approximation of the reflection coefficient for rapid real time calculation of inhomogeneous films. J. Opt. Soc. Am. A. 14, 931–939 (1997)

    Article  ADS  Google Scholar 

  • Kim, J., Drachev, V.P., Jacob, Z., Naik, G.V., Boltasseva, A., Narimanov, E.E., Shalaev, V.M.: Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express. 20(7), 8100–8116 (2012)

    Article  ADS  Google Scholar 

  • Kim, K., Lee, D.-H., Lim, H.: Resonant absorption and mode conversion in a transition layer between positive media. Opt. Express. 16, 18505–18513 (2008)

    Article  ADS  Google Scholar 

  • Lee, D., So, S., Hu, G., Kim, M., Badloe, T., Cho, H., Kim, J., Kim, H., Qiu, C.-W., Rho, J.: Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight. 2, 1–23 (2022)

    Article  Google Scholar 

  • Litchinitser, N.M., Maimistov, A.I., Gabitov, I.R., Sagdeev, R.Z., Shalaev, V.M.: Metamaterials: electromagnetic enhancement at zero-index transition. Opt. Lett. 33, 2350–2352 (2008)

    Article  ADS  Google Scholar 

  • Liu, R., Cheng, Q., Chin, J.Y., Mock, J.J., Cui, T.J., Smith, D.R.: Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials. Opt. Express. 17, 21030 (2009)

    Article  ADS  Google Scholar 

  • Low, T., Chen, P.-Y., Basov, D.N.: Superluminal plasmons with resonant gain in population inverted bilayer graphene. Phys. Rev. B. 98(4), 041403 (2018)

    Article  ADS  Google Scholar 

  • Massoud, Y., Nieuwoudt, A.: Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits. ACM J. Emerg. Technol. Comput. Syst. (JETC). 2, 155–196 (2006)

    Article  Google Scholar 

  • Naveed, M.A., Ansari, M.A., Kim, I., Badloe, T., Kim, J., Oh, D.K., Riaz, K., Tauqeer, T., Younis, U., Saleem, M.: Optical spinsymmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsyst. Nanoeng. 7, 5 (2021)

    Article  ADS  Google Scholar 

  • Sakhdari, M., Farhat, M., Chen, P.-Y.: PT-symmetric metasurfaces: wave manipulation and sensing using singular points. New. J. Phys. 19(6), 065002 (2017)

    Article  ADS  Google Scholar 

  • Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F.: Smith metamaterial electromagnetic cloak at microwave frequencies. Science. 314, 977–980 (2006)

    Article  ADS  Google Scholar 

  • Shamonina, E., Solymar, L.: Metamaterials: how the subject started. Metamaterials 11, 12–8 (2007). https://doi.org/10.1016/j.metmat.2007.02.001

    Article  ADS  Google Scholar 

  • Shekhar, P., Atkinson, J., Jacob, Z.: Hyperbolic metamaterials: fundamentals and applications. Nano Converg. 1, 14 (2014)

    Article  Google Scholar 

  • Smith, D.R., Mock, J.J., Starr, A.F., Schurig, D.: Gradient index metamaterials. Phys. Rev. E. 71, 036609 (2005)

    Article  ADS  Google Scholar 

  • Takatsuka, Y., Takahagi, K., Sano, E., Ryzhii, V., Otsuji, T.: Gain enhancement in graphene terahertz amplifiers with resonant structures. J. Appl. Phys. 112(3), 033103 (2012)

    Article  ADS  Google Scholar 

  • Tasolamprou, A.C., Koulouklidis, A.D., Daskalaki, C., Mavidis, C.P., Kenanakis, G., Deligeorgis, G., Viskadourakis, Z., Kuzhir, P., Tzortzakis, S., Kafesaki, M., Economou, E.N., Soukoulis, C.M.: Experimental demonstration of ultrafast THz modulation in a graphene-based thin film absorber through negative photoinduced conductivity. ACS Photonics. 6(3), 720–727 (2019)

    Article  Google Scholar 

  • Wang, H., Sivan, V.P., Mitchell, A., Rosengarten, G., Phelan, P., Wang, L.: Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells. 137, 235–242 (2015)

    Article  Google Scholar 

  • Yeh, P., Sari, S.: Optical properties of stratified media with exponentially graded refractive index. Appl. Opt. 22, 4142–4145 (1983)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

T.G. wrote the main manuscript text and prepared figures.

Corresponding author

Correspondence to Tatjana Gric.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gric, T. Inhomogeneous inclusions enhanced negative absorption in the plasma-dielectric nanostructure. Opt Quant Electron 55, 596 (2023). https://doi.org/10.1007/s11082-023-04898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04898-3

Keywords

Navigation