Log in

Numerical modeling of photonic crystal semiconductor optical amplifiers-based 160 Gb/s all-optical NOR and XNOR logic gates

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A photonic crystal (PC) is a periodic optical nanostructure typically containing ordered arrays of holes that confine and control the motion of photons. Moreover, PC strongly modifies the dispersion relationship. The conventional semiconductor optical amplifier (SOA), on the other hand, is an attractive nonlinear element due to its strong nonlinearity, compactness, power efficiency, and integration potential with other optoelectronic devices. Thus, we combine the unique features of PC with those of SOA to numerically model ultrafast all-optical NOT-OR (NOR) and exclusive-NOR (XNOR) logic gates at 160 Gb/s. A comparison is made between PCSOAs and conventional SOAs schemes through examining the variation of the quality factor (QF) against the key operational parameters, including the effects of the amplified spontaneous emission and operating temperature, in order to obtain more realistic results. The obtained results confirm that the considered logic operations using PCSOAs are capable of operating at 160 Gb/s with higher QF than when having conventional SOAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adibi, A., Lee, R., Xu, Y., Yariv, A., Scherer, A.: Design of photonic crystal optical waveguide with single-mode propagation in the photonic bandgap. Electron. Lett. 36, 1376–1378 (2000)

    Google Scholar 

  • Altug, H., Englund, D., Vučković, J.: Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006)

    Google Scholar 

  • Baba, T.: Slow light in photonic crystal. Nat. Photonics 2, 465–473 (2008)

    ADS  Google Scholar 

  • Bakoz, A.P., Liles, A.A., Gonzalez-Fernandez, A.A., Habruseva, T., Hu, C., Viktorov, E.A., Hegarty, S.P., O’Faolain, L.: Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector. Light Sci. Appl. 7, 438–444 (2018)

    Google Scholar 

  • Breuer, D., Petermann, K.: Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems. IEEE Photonics Technol. Lett. 9, 398–400 (1997)

    ADS  Google Scholar 

  • Cao, T., Ho, Y.L.D., Heard, P.J., Barry, L.P., Kelly, A.E., Cryan, M.J.: Fabrication and measurement of a photonic crystal waveguide integrated with a semiconductor optical amplifier. J. Opt. Soc. Am. B 26, 768–777 (2009)

    ADS  Google Scholar 

  • Chen, X., Huo, L., Zhao, Z., Zhuang, L., Lou, C.: Study on 100-Gb/s reconfigurable all-optical logic gates using a single semiconductor optical amplifier. Opt. Express 24, 30245–30253 (2016)

    ADS  Google Scholar 

  • Connelly, M.J.: Semiconductor Optical Amplifiers. Springer, New York (2002)

    Google Scholar 

  • Debnath, K., Welna, K., Ferrera, M., Deasy, K., Lidzey, D.G., O’Faolain, L.: Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide. Opt. Lett. 38, 154–156 (2013)

    ADS  Google Scholar 

  • Dong, J., Zhang, X., Xu, J., Huang, D.: 40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: experimental demonstration and theoretical analysis. Opt. Commun. 281, 1710–1715 (2008)

    ADS  Google Scholar 

  • Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers, 2nd edn. World Scientific Publishing Company, Singapore (2013)

    Google Scholar 

  • Kang, I., Rasras, M., Buhl, L., Dinu, M., Cabot, S., Cappuzzo, M., Gomez, L.T., Chen, Y.F., Patel, S.S., Dutta, N.K., Piccirilli, A., Jaques, J., Giles, C.R.: All-optical XOR and XNOR operations at 86.4 Gb/s using a pair of semiconductor optical amplifier Mach–Zehnder interferometers. Opt. Express 17, 19062–19065 (2009)

    ADS  Google Scholar 

  • Kawanishi, S.: Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing. IEEE J. Quantum Electron. 34, 2064–2079 (1998)

    ADS  Google Scholar 

  • Kim, J.H., Kim, Y.I., Byun, Y.T., Jhon, Y.M., Lee, S., Kim, S.H., Woo, D.H.: All-optical logic gates using semiconductor optical-amplifier-based devices and their applications. J. Korean Phys. Soc. 45, 1158–1161 (2004)

    Google Scholar 

  • Kim, J.Y., Kang, J.M., Kim, T.Y., Han, S.K.: All-optical multiple logic gates with XOR, NOR, OR and NAND function using parallel SOA-MZI structures: theory and experiment. J. Lightwave Technol. 24, 3392–3399 (2006a)

    ADS  Google Scholar 

  • Kim, J.Y., Kang, J.M., Kim, T.Y., Han, S.K.: 10 Gbits all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures. Electron. Lett. 42, 303–307 (2006b)

    Google Scholar 

  • Kotb, A.: All-Optical Logic Gates Using Semiconductor Optical Amplifier. Lambert Academic Publishing, Saarbrucken (2012)

    Google Scholar 

  • Kotb, A.: Simulation of all-optical logic NOR gate based on two-photon absorption with semiconductor optical amplifier-assisted Mach–Zehnder interferometer with the effect of amplified spontaneous emission. J. Korean Phys. Soc. 66, 1593–1598 (2015a)

    ADS  Google Scholar 

  • Kotb, A.: Modeling of high-quality-factor XNOR gate using quantum-dot semiconductor optical amplifiers at 1 Tb/s. Braz. J. Phys. 45, 288–295 (2015b)

    ADS  Google Scholar 

  • Kotb, A., Guo, C.: Two-photon absorption in quantum dot semiconductor optical amplifiers-based all-optical XOR gate at 2 Tb/s. Opt. Quantum Electron. 51(58), 1–12 (2019)

    Google Scholar 

  • Kotb, A., Maeda, J.: All-optical logic NXOR based on semiconductor optical amplifiers with the effect of amplified spontaneous emission. Optoelectron. Lett. 8, 437–440 (2012)

    ADS  Google Scholar 

  • Kotb, A., Mohamed, Y.: Phase-shift keying modulated data signal using SOA-MZI-based all-optical logic AND gate at 80 Gb/s. Int. J. Opt. 2018(5864530), 1–8 (2018)

    Google Scholar 

  • Kotb, A., Zoiros, K.E.: Performance analysis of all-optical XOR gate with photonic crystal semiconductor optical amplifier-assisted Mach–Zehnder interferometer at 160 Gb/s. Opt. Commun. 402, 511–517 (2017)

    ADS  Google Scholar 

  • Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: Effect of amplified spontaneous emission on semiconductor optical amplifier based all-optical logic. Opt. Commun. 284, 5798–5803 (2011)

    ADS  Google Scholar 

  • Kotb, A., Zoiros, K.E., Guo, C.: All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach–Zehnder interferometer modules. Opt. Laser Technol. 108, 426–433 (2018a)

    ADS  Google Scholar 

  • Kotb, A., Zoiros, K.E., Guo, C.: 160 Gb/s photonic crystal semiconductor optical amplifiers-based all-optical logic NAND gate. Photon Netw. Commun. 36, 246–255 (2018b)

    Google Scholar 

  • Kotb, A., Zoiros, K.E., Guo, C.: 2 Tb/s all-optical gates based on two-photon absorption in quantum dot semiconductor optical amplifiers. Opt. Laser Technol. 112, 442–451 (2019a)

    ADS  Google Scholar 

  • Kotb, A., Zoiros, K.E., Guo, C.: Ultrafast performance of all-optical AND and OR logic operations at 160 Gb/s using photonic crystal semiconductor optical amplifier. Opt. Laser Technol. 119(105611), 1–10 (2019b)

    Google Scholar 

  • Kumar, Y., Shenoy, M.R.: A novel scheme of optical injection for fast gain recovery in semiconductor optical amplifier. IEEE Photonics Technol. Lett. 26, 933–936 (2014)

    ADS  Google Scholar 

  • Kumar, Y., Shenoy, M.R.: Enhancement in the gain recovery of a semiconductor optical amplifier by device temperature control. Pramana J. Phys. 87, 1–6 (2016)

    ADS  Google Scholar 

  • Lee, S., Park, J., Lee, K., Eom, D., Lee, S., Kim, J.H.: All-optical exclusive NOR logic gate using Mach–Zehnder interferometer. Jpn. J. Appl. Phys. 41, 1155–1157 (2002)

    ADS  Google Scholar 

  • Mizuta, E., Watanabe, H., Baba, T.: All semiconductor low-∆ photonic crystal waveguide for semiconductor optical amplifier. Jpn. J. Appl. Phys. 45, 6116–6120 (2006)

    ADS  Google Scholar 

  • Nosratpour, A., Razaghi, M., Darvish, G.: Computational study of pulse propagation in photonic crystal semiconductor optical amplifier. J. Nanophotonics 12(036015), 1–12 (2018)

    Google Scholar 

  • Nozaki, K., Tanabe, T., Shinya, A., Matsuo, S., Sato, T., Taniyama, H., Notomi, M.: Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010)

    ADS  Google Scholar 

  • Occhi, L., Scollo, R., Schares, L., Guekos, G.: Effective alpha factor in bulk semiconductor optical amplifiers of different lengths. In: 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, vol. 1, pp. 105–106 (2001)

  • Painter, O., Lee, R.K., Scherer, A., Yariv, A., O’Brien, J.D., Dapkus, P.D., Kim, I.: Two-dimensional photonic bandgap defect mode laser. Science 284, 1819–1821 (1999)

    Google Scholar 

  • Qin, C., Zhao, J., Yu, H., Zhang, J.: Gain recovery dynamics in semiconductor optical amplifiers with distributed feedback grating under assist light injection. Opt. Eng. 55(076116), 1–7 (2016)

    Google Scholar 

  • Shaik, E.H., Rangaswamy, N.: Realization of XNOR logic function with all-optical high contrast XOR and NOT gates. Opto Electron. Rev. 26, 63–72 (2018)

    ADS  Google Scholar 

  • Sharaiha, A., Topomondzo, J., Morel, P.: All-optical logic AND-NOR gates with three inputs based on cross-gain modulation in a semiconductor optical amplifier. Opt. Commun. 265, 322–325 (2006)

    ADS  Google Scholar 

  • Taleb, H., Abedi, K.: Design of a novel low power all-optical NOR gate using photonic crystal quantum-dot semiconductor optical amplifiers. Opt. Lett. 39, 6237–6241 (2014)

    ADS  Google Scholar 

  • Thapa, S., Zhang, X., Dutta, N.K.: Effects of two-photon absorption on pseudo-random bit sequence operating at high speed. J. Mod. Opt. 66, 100–108 (2019)

    ADS  Google Scholar 

  • Wang, J., Maitra, A., Poulton, C.G., Freude, W., Leuthold, J.: Temporal dynamics of the alpha factor in semiconductor optical amplifiers. J. Lightwave Technol. 25, 891–900 (2007)

    ADS  Google Scholar 

  • Zhang, X., Dutta, N.K.: Effects of two-photon absorption on all-optical logic operation based on quantum-dot semiconductor optical amplifiers. J. Mod. Opt. 65, 166–173 (2018)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was funded by the Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2019FYT0002) and Talented Young Scientist Program supported by the China Science and Technology Exchange Center of Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amer Kotb or Chunlei Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotb, A., Guo, C. Numerical modeling of photonic crystal semiconductor optical amplifiers-based 160 Gb/s all-optical NOR and XNOR logic gates. Opt Quant Electron 52, 89 (2020). https://doi.org/10.1007/s11082-020-2225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-2225-x

Keywords

Navigation