Log in

Elimination of polarization effect in a fiber-optic gyro by using polarization elements

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper proposes the theoretical design of a polarized interferometric fiber-optic gyroscope (IFOG). The polarized IFOG utilizes a coherent light source and polarization elements (Faraday rotators and polarizing beam splitter) to obtain maximum visibility of an interference signal and to compensate for the birefringent effect of a single-mode fiber coil in an IFOG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmed, K., Paul, B.K., Islam, M.S., Chowdhury, S., Sen, S., Islam, M.I., Asaduzzaman, S.: Ultra high birefringence and lower beat length for square shape PCF: Analysis effect on rotation angle and eccentricity. Alex. Eng. J. 57(4), 3683–3691 (2018)

    Article  Google Scholar 

  • Ahmed, K., Paul, B.K., Jabin, M.A., Biswas, B.: FEM analysis of birefringence, dispersion and nonlinearity of graphene coated photonic crystal fiber. Ceram. Int. 45(12), 15343–15347 (2019a)

    Article  Google Scholar 

  • Ahmed, K., Paul, B.K., Vasudevan, B., Rashed, A.N.Z., Maheswar, R., Amiri, I., Yupapin, P.: Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application. Results Phys. 12, 2021–2025 (2019b)

    Article  ADS  Google Scholar 

  • Anas, M.T., Asaduzzaman, S., Ahmed, K., Bhuiyan, T.: Investigation of highly birefringent and highly nonlinear Hexa Sectored PCF with low confinement loss. Results Phys. 11, 1039–1043 (2018)

    Article  ADS  Google Scholar 

  • Arditty, H.J., Lefevre, H.C.: Sagnac effect in fiber gyroscopes. Opt. Lett. 6(8), 401–403 (1981)

    Article  ADS  Google Scholar 

  • Burns, W.K., Kersey, A.D.: Fiber-optic gyroscopes with depolarized light. J. Lightwave Technol. 10(7), 992–999 (1992)

    Article  ADS  Google Scholar 

  • Chow, W., Gea-Banacloche, J., Pedrotti, L., Sanders, V., Schleich, W., Scully, M.: The ring laser gyro. Rev. Mod. Phys. 57(1), 61–104 (1985)

    Article  ADS  Google Scholar 

  • Ciminelli, C., Campanella, C.E., Armenise, M.N.: Optimized design of integrated optical angular velocity sensors based on a passive ring resonator. J. Lightwave Technol. 27(14), 2658–2666 (2009)

    Article  ADS  Google Scholar 

  • Ciminelli, C., D’Agostino, D., Carnicella, G., Dell’Olio, F., Conteduca, D., Ambrosius, H.P., Smit, M.K., Armenise, M.N.: A high- Q InP resonant angular velocity sensor for a monolithically integrated optical gyroscope. IEEE Photonics J. 8(1), 1–19 (2016a)

    Article  Google Scholar 

  • Ciminelli, C., Dell’Olio, F., Armenise, M.N.: Photonics in Space: Advanced Photonic Devices and Systems. World Scientific, Singapore (2016b)

    Book  Google Scholar 

  • Digonnet, M.J., Lloyd, S.W., Fan, S.: Coherent backscattering noise in a photonic-bandgap fiber optic gyroscope. In: Proceedings of SPIE, p. 750302 (2009)

  • Eminoglu, B., Kline, M.H., Izyumin, I., Yeh, Y.-C., Boser, B.E.: Background calibrated MEMS gyroscope. In: Sensors, 2014 IEEE. IEEE, pp. 922–925 (2014)

  • Hossen, M.N., Ferdous, M., Ahmed, K., Khalek, M.A., Chakma, S., Paul, B.K.: Single polarization photonic crystal fiber filter based on surface plasmon resonance. Front. Optoelectron. 12(2), 157–164 (2019)

    Article  Google Scholar 

  • Kintner, E.C.: Polarization control in optical-fiber gyroscopes. Opt. Lett. 6(3), 154–156 (1981)

    Article  ADS  Google Scholar 

  • Lefevre, H.: Single-mode fibre fractional wave devices and polarisation controllers. Electron. Lett. 16(20), 778–780 (1980)

    Article  ADS  Google Scholar 

  • Lin, C.-E., Yu, C.-J.: Heterodyne interferometry to eliminate the polarization effect in a fiber optic gyro. IEEE Photonics Technol. Lett. 26(19), 1897–1899 (2014)

    Article  ADS  Google Scholar 

  • Lloyd, S.W., Digonnet, M.J., Fan, S.: Tactical-grade interferometric fiber optic gyroscope driven with a narrow-linewidth laser. In: Proceedings of SPIE, 2011 SPIE, p. 77531V-1 (2011)

  • Lloyd, S.W., Digonnet, M.J., Fan, S.: Modeling coherent backscattering errors in fiber optic gyroscopes for sources of arbitrary line width. J. Lightwave Technol. 31(13), 2070–2078 (2013)

    Article  ADS  Google Scholar 

  • Lu, P., Wang, Z., Yang, Y., Zhao, D., **ong, S., Li, Y., Peng, C., Li, Z.: Multiple optical compensation in interferometric fiber-optic gyroscope for polarization nonreciprocal error suppression. IEEE Photonics J. 6(5), 1–8 (2014)

    Google Scholar 

  • Medjadba, H., Lecler, S., Mokhtar Simohamed, L., Fontaine, J., Meyrueis, P.: Investigation of mode coupling effects on sensitivity and bias of a multimode fiber loop interferometer: application to an optimal design of a multimode fiber gyroscope. Opt. Fiber Technol. 17(1), 50–58 (2011)

    Article  ADS  Google Scholar 

  • Miya, T., Terunuma, Y., Hosaka, T., Miyashita, T.: Ultimate low-loss single-mode fibre at 1.55 μm. Electron. Lett. 15(4), 106–108 (1979)

    Article  ADS  Google Scholar 

  • Paul, B.K., Ahmed, K., Asaduzzaman, S., Islam, M.S.: Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis. Sens. Bio-Sens. Res. 12, 36–42 (2017)

    Article  Google Scholar 

  • Paul, B.K., Ahmed, K., Rahman, S.M., Shanthi, M., Vigneswaran, D., Zakaria, R.: Numerical analysis of a highly nonlinear microstructured optical fiber with air-holes arranged in spirals. Opt. Fiber Technol. 51, 90–95 (2019)

    Article  ADS  Google Scholar 

  • Pavlath, G.A., Shaw, H.J.: Birefringence and polarization effects in fiber gyroscopes. Appl. Opt. 21(10), 1752–1757 (1982)

    Article  ADS  Google Scholar 

  • Poletti, F., Petrovich, M., Van Brakel, A., Richardson, D.: Hollow core photonic bandgap fibre for truly single mode operation. In: Proceedings of IEEE/LEOS Winter Topical Meeting Series, 2008 IEEE. IEEE, pp. 182–183 (2008)

  • Post, E.J.: Sagnac effect. Rev. Mod. Phys. 39(2), 475–493 (1967)

    Article  ADS  Google Scholar 

  • Reza, K.S., Paul, B.K., Ahmed, K.: Highly birefringent, low loss single-mode porous fiber for THz wave guidance. Results Phys. 11, 549–553 (2018)

    Article  ADS  Google Scholar 

  • Szafraniec, B., Sanders, G.A.: Theory of polarization evolution in interferometric fiber-optic depolarized gyros. J. Lightwave Technol. 17(4), 579 (1999)

    Article  ADS  Google Scholar 

  • Takada, K.: Calculation of Rayleigh backscattering noise in fiber-optic gyroscopes. J. Opt. Soc. Am. A 2(6), 872–877 (1985)

    Article  ADS  Google Scholar 

  • Wang, Z., Yang, Y., Lu, P., Liu, C., Zhao, D., Peng, C., Zhang, Z., Li, Z.: Optically compensated polarization reciprocity in interferometric fiber-optic gyroscopes. Opt. Express 22(5), 4908–4919 (2014)

    Article  ADS  Google Scholar 

  • Xu, X., Gao, F., Song, N., **, J.: Measurement and suppression of secondary waves caused by high-order modes in a photonic bandgap fiber-optic gyroscope. Opt. Express 24(10), 10246–10253 (2016)

    Article  ADS  Google Scholar 

  • Yu, C.-J., Lin, C.-E.: A simple, full-dynamic-range optical heterodyne single-mode fiber gyroscope. J. Lightwave Technol. 33(20), 4215–4220 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Science and Technology, Taiwan, ROC, under Grant 108-2221-E-182-059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Jen Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The intensity signal in previous method (Lin and Yu 2014) and the proposed method are respectively expressed as

$$ I_{sig1} = \frac{{I_{0} }}{16}\sin^{2} \theta \left[ {1 + \cos \left( {\omega t + \varphi_{sag} } \right)} \right], $$
(34)
$$ I_{sig2} = \frac{{I_{0} }}{2}\left( {\sin^{2} \theta \cos^{2} \frac{\varphi }{2} + \cos^{2} \theta \sin^{2} \frac{\xi }{2}} \right)\left[ {1 - \cos \left( {\varphi_{sag} + \varGamma } \right)} \right]. $$
(35)

Recall that I0 in Eqs. (34) and (35) is the intensity of the incident beam. The transmittance is defined as

$$ T_{n} = \frac{{\hbox{max} \left( {I_{\text{sign}} } \right)}}{{I_{0} }},\quad n = 1,2. $$
(36)

where \( \hbox{max} \left( {I_{sign} } \right) \) is the maximum intensity signal that the system can be operated under an optimum condition, and the subscript n = 1 and 2 indicates the method in reference (Lin and Yu 2014) and the proposed method, respectively. In Eq. (34), the maximum intensity signal is obtained for the birefringent parameter of an SMF \( \theta = 0 \) and interference term \( \cos \left( {\omega t + \varphi_{sag} } \right) = 1 \). Under this condition, the transmittance is equal to \( T_{1} = {1 /8} \). In Eq. (35), the maximum intensity signal occurs at the birefringent parameters of an SMF, \( \varphi = 0{\text{ or 2}}\pi \) and \( \xi = \pm \pi \), and interference term \( \cos \left( {\varphi_{sag} + \varGamma } \right) = - 1 \), in this condition, the transmittance is equal to \( T_{2} = 1 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, CJ., Lin, HM. & Peng, KQ. Elimination of polarization effect in a fiber-optic gyro by using polarization elements. Opt Quant Electron 52, 104 (2020). https://doi.org/10.1007/s11082-020-2193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-2193-1

Keywords

Navigation