Log in

Quantum walk topology and spontaneous parametric down conversion

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Recently, it was proposed to study the complex physics of topological phases by an all optical implementation of a discrete-time quantum walk. The main novel ingredient proposed for this study is the use of non-linear parametric amplifiers in the network which could in turn be used to emulate intra-atomic interactions and thus analyze many-body effects in topological phases even when using light as the quantum walker. In this review, and as a first step towards the implementation of our scheme, we analyze the interplay between quantum walk lattice topology and spatial correlations of bi-photons produced by spontaneous parametric down-conversion. We also describe different detection methods suitable for our proposed experimental scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal, G., Pathak, P.: Quantum random walk of the field in an externally driven cavity. Phys. Rev. A 72, 033815–033821 (2005)

    Article  ADS  Google Scholar 

  • Anderson, M.H., et al.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  • Bernevig, B., et al.: HgTe quantum wells. Science 314, 1757–1761 (2006)

    Article  ADS  Google Scholar 

  • Bouwmeester, D., et al.: Optical galton board. Phys. Rev. A 61, 013410–013419 (1999)

    Article  ADS  Google Scholar 

  • Bradley, C., et al.: Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1691 (1995)

    Article  ADS  Google Scholar 

  • Bromberg, Y.: Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102, 253904–253908 (2009)

    Article  ADS  Google Scholar 

  • Broomberg, Y., et al.: Hanbury Brown and Twiss inteferometry with interacting photons. Nat. Photon. 4, 663–730 (2010)

    Article  Google Scholar 

  • Broome, M., et al.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602–153606 (2010)

    Article  ADS  Google Scholar 

  • Davis, et al.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  Google Scholar 

  • Do, B., et al.: Experimental realization of quantum quincux by use of linear optical elements. J. Opt. Soc. Am. B 22, 499–504 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • Ermann, L., Paz, J.P., Saraceno, M.: Decoherence induced by a chaotic environment: a quantum walk with complex coin. Phys. Rev. A 73, 012302–012309 (2006)

    Article  ADS  Google Scholar 

  • Godoy, S., Fujita, S.: A quantum random walk model for tunneling diffusion in a 1D lattice. A quantum correction to Ficks law. J. Chem. Phys. 97, 5148–5154 (1992)

    Article  ADS  Google Scholar 

  • Greiner, M., Mandel, O., Esslinger, T., Hänsch, T., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  Google Scholar 

  • Hasan, M., Kane, C.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  Google Scholar 

  • Kane, C., Mele, E.: Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802–146806 (2005)

    Article  ADS  Google Scholar 

  • Karski, M., et al.: Quantum walk in position space with single optically trapped atoms. Science 325, 174–177 (2009)

    Article  ADS  Google Scholar 

  • Kitagawa, T., Rudner, M., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429–033441 (2010)

    Article  ADS  Google Scholar 

  • Kitagawa, T., et al.: Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3, 882–889 (2012)

    Article  ADS  Google Scholar 

  • Koening, M., et al.: Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007)

    Article  ADS  Google Scholar 

  • Li, H., Haldane, F.: Entanglement spectrum as a generalization of entanglement entropy: indentification of topoligcal order in non-abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504–010508 (2008)

    Article  ADS  Google Scholar 

  • Mohseni, M., Rebentrost, P., Lloyd, S., Aspure-Guzik, A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008)

    Article  ADS  Google Scholar 

  • Moore, J.E.: The birth of topological insulators. Nature 464, 194–198 (2010)

    Article  ADS  Google Scholar 

  • Moulieras, S., Lewenstein, M., Puentes, G.: Entanglement engineering and topological protection by discrete-time quantum walks. J. Phys. B 46, 104005–104016 (2013)

    Article  ADS  Google Scholar 

  • Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Oka, T., et al.: Interfaces of correlated electron systems: proposed mechanism for colossal electroresistance. Phys. Rev. Lett. 95, 137601–137604 (2005)

    Article  ADS  Google Scholar 

  • Peruzzo, A.: Quantum walk of correlated particles. Science 329, 1500–1503 (2010)

    Article  ADS  Google Scholar 

  • Preskill, J.: Introduction to quantum computation and information, Lo, H.-K., Popescu, S., Spiller, T. (eds.) (World Scientific, Singapore, Hardcover 1998 Paperback 2000), ar**v:quant-ph/9712048 (1998)

  • Puentes, G., Santillan, O.: Zak Phase in Discrete-Time Quantum Walks, arxiv:quant-ph/1506.08100v2, 7 pages (2015)

  • Puentes, G.: “Unraveling the physics of topological phases by quantum walks of light”, arxiv:quant-ph/1409.1273, p 10, (2014)

  • Puentes, G., Hermosa, N., Torres, J.P.: Weak measurements with orbital angular momentum pointer states. Phys. Rev. Lett. 109, 040401–040401 (2012)

    Article  ADS  Google Scholar 

  • Qi, X., et al.: Fractional charge and quantized current in the quantum spin Hall state. Nat. Phys. 4, 273–276 (2008)

    Article  Google Scholar 

  • Regensburger, A., et al.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2013)

    Article  ADS  Google Scholar 

  • Rudner, M.: Topological transition in non-Hermitian quantum walk. Phys. Rev. Lett. 102, 065703–065707 (2009)

    Article  ADS  Google Scholar 

  • Ryan, C., et al.: Experimental implementation of discrete-time quantum random walk on an NMR quantum information processor. Phys. Rev. A 72, 062317–062325 (2005)

    Article  ADS  Google Scholar 

  • Schmitz, H., et al.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504–0905008 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Schreiber, A., et al.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502–050506 (2010)

    Article  ADS  Google Scholar 

  • Schreiber, A., et al.: Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106, 180404–180408 (2011)

    Article  Google Scholar 

  • Schreiber, A., et al.: A 2D quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012)

    Article  ADS  Google Scholar 

  • Skryabin, D.V., Bialanca, F., Bird, D., Benabid, F.: Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas. Phys. Rev. Lett. 93, 143907–143911 (2004)

    Article  ADS  Google Scholar 

  • Su, W., Schrieffer, J., Heeger, A.: Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1702 (1979)

    Article  ADS  Google Scholar 

  • Thouless, D., et al.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–409 (1982)

    Article  ADS  Google Scholar 

  • Torma, P.: Transitions in quantum networks. Phys. Rev. Lett. 81, 2185–2189 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  • von Klitzing, K.: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–498 (1980)

    Article  ADS  Google Scholar 

  • Zahringer, F., et al.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503–100507 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

G. P. gratefully acknowledges financial support from PICT2014-1543 Grant and Raices programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciana Puentes.

Additional information

This article is part of the Topical Collection on Advances in the science of light.

Guest Edited by Jelena Radovanovic, Milutin Stepić, Mikhail Sumetsky, Mauro Pereira and Dragan Ind**.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puentes, G. Quantum walk topology and spontaneous parametric down conversion. Opt Quant Electron 48, 145 (2016). https://doi.org/10.1007/s11082-016-0410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0410-8

Keywords

Navigation